A PLAN DESIGNED TO PREPARE FOR THE CONSEQUENCES OF FUELS CONVERSION

ON AIR QUALITY IN HARRIS COUNTY, TEXAS

TD 195 .E49 P63 1979

.

.

Harris County Pollution Control Department Toxcon Engineering Company

A PLAN DESIGNED TO PREPARE FOR THE CONSEQUENCES OF FUELS CONVERSION ON AIR QUALITY IN HARRIS COUNTY, TEXAS

Prepared By:

Harris County Pollution Control Department, Grantee Toxcon Engineering Company, Consultant

December 31, 1979

Property of CSC Library

This work was supported in part by a Coastal Energy Impact Program planning grant pursuant to the Coastal Zone Management Act of 1972, as amended. The grant was administered in Texas by the Governor's Budget and Planning Office in cooperation with the Office of Coastal Zone Management, National Oceanic and Atmospheric Administration, Washington, D.C.

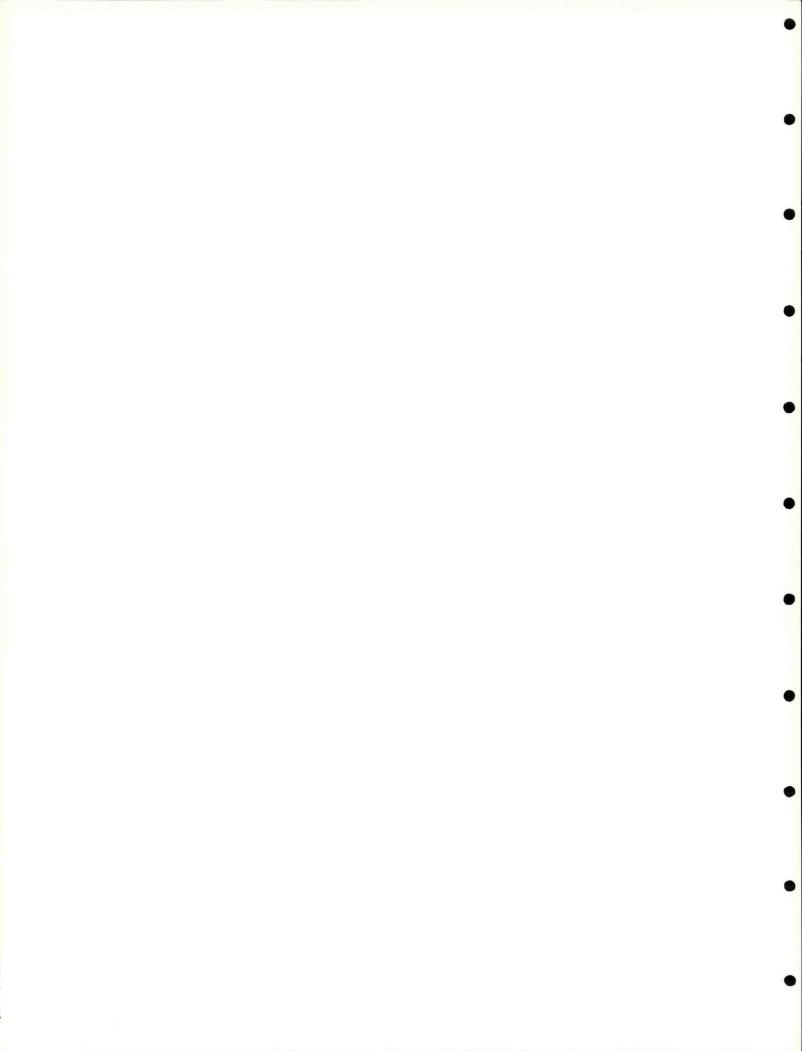
> U.S. DEFARTMENT OF COMMERCE NOAA COASTAL SERVICES CENTER 2234 SOUTH HOBSON AVENUE CHARLESTON, SC 29405-2413

TD195, E49 763 1979 SEP 1 61991

ACKNOWLEDGEMENTS

The preparation of this report would not have been possible without the cooperation, generosity and assistance of the following:

The Texas Air Control Board The City of Houston Bureau of Air Quality Control Houston-Galveston Area Council Beckman Instruments, Inc. The Bendix Corporation Columbia Scientific Industries Meloy Laboratories Radian Corporation Thermo Electron Corp. The use of brand names in this document should not be construed to be an endorsement of any product by the Harris County Pollution Control Department or the Toxcon Engineering Company, or any person acting on their behalf.


TABLE OF CONTENTS

Introduction
Energy Consuming Sources
Air Quality Data Base
Ambient Air Monitoring
Sampling Equipment
Data Collection and Handling 6-1
The Continuing Evaluation of SO $_2$ Air Pollution Problems 7-1
Appendix

INTRODUCTION

.

1

SCOPE OF PROJECT

The Harris County Pollution Control Department obtained federal grant funds in the amount of \$27,248 to finance a planning project designed to prepare for the consequences of new or expanded energy facilities in Harris County. In kind matching funds of \$6,812 were provided through our operating budget. Particular emphasis was given to the impact of fuels conversion on air quality. We set out to:

- Compile a list of energy consuming sources constructed or expanded after July 26, 1976.
- Assemble available air quality data thereby establishing a data base for total suspended particulate (TSP), sulfur dioxide (SO₂), and nitrogen dioxide (NO₂).
- Make a proposal for a sampling program to measure the impact on air quality of these new and expanded sources.
- Make a proposal for sampling equipment to carry out the sampling program including design criteria and operating personnel.
- Make a data collection proposal which would include laboratory support and data processing.
- Make a proposal for analyzing and evaluating the data with the objective of coordinating energy management to minimize the effect on air quality of increased energy usage.

We believe we have accomplished these objectives and have delineated them in the report which follows. In addition to the stated objectives we also investigated and included in this report information about energy sources outside the County which impact us; and by questionnaire we obtained an SO₂ emissions inventory. Not originally planned or scheduled are seven maps accompanying this report. They visually depict data which otherwise is less easily comprehended.

ENERGY CONSUMING SOURCES: A DEFINITION

The list of energy consuming sources is extensive. In the broadest sense, these sources include everything from lawnmowers to atomic powered electric generating plants.

For practical purposes it was necessary to limit the kinds of energy consuming sources to be considered. The primary criteria relied upon involved atmospheric emissions. Only those energy consuming sources which would emit significant quantities of pollutants into the atmosphere were investigated. If the construction, modification, or expansion of an energy consuming source required a Texas Air Control Board (TACB) construction permit, then it was included in the study. As a result of this decision, the study primarily focused upon petroleum refineries, petrochemical plants, chemical plants, and fossil fuel fired electric generating plants. These kinds of facilities represent the dominant industrial activity in Harris County.

GEOGRAPHICAL AREA OF CONSIDERATION

The most important concern of this study involved past, present, and future air quality over Harris County. Given the nature of our atmosphere, it is clear that activities in adjacent counties are an important factor in future air pollution problems. With the appropriate wind direction, SO₂ emitted from a boiler stack in Texas City on one day may be breathed by a shopper in downtown Houston the next day. Energy consuming sources in Galveston, Chambers, Montgomery, Ft. Bend, and eastern Brazoria counties were therefore also considered.

Major energy consuming sources in western Brazoria County (i.e., those located near Freeport and Sweeny) could have conceivably been included in this study. However, given the prevailing wind direction, proximity of sources, and historical air emissions data, it was concluded that atmospheric emissions from these sources would probably have only a minor impact on air quality over Harris County.

TIME FRAME

This study came about as a result of funds made available by the Coastal Energy Impact Program. The Coastal Energy Impact Program was created by the 1976 amendments to the Coastal Zone Management Act of 1972. These amendments were signed into law on July 26, 1976.

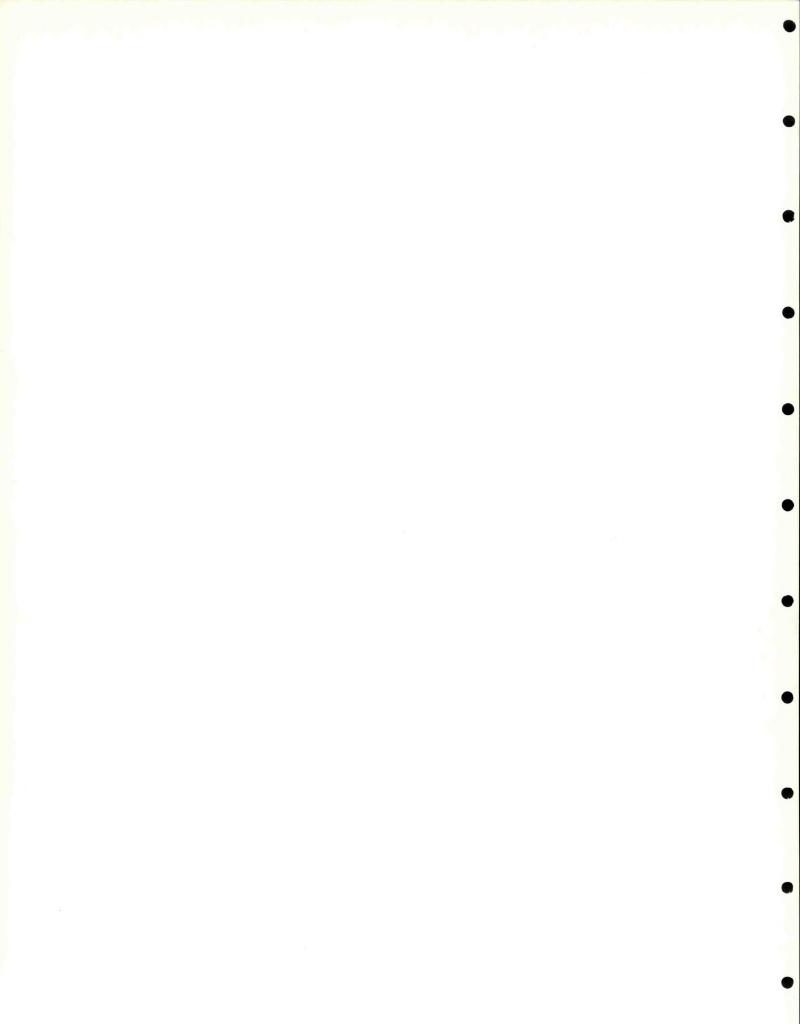
The purpose of the grant under which this study was conducted was to consider the impact on air quality of certain activities commencing after July 26, 1976. The activities of interest were the construction, modification, and expansion of energy consuming sources. As many energy consuming sources were built, modified, or constructed in and around Harris County in the years prior to the grant date, the decision was made to expand the time frame of the study as much as possible.

TACB records were the key source of information with respect to new energy consuming sources. Construction permits for most new air pollutant emitting industrial facilities were required in Texas after March 5, 1972. As important information was readily available only from that date forward, March 5, 1972 marked the beginning date of the study.

The time frame of the study ends on June 30, 1979.

AIR EMISSIONS

The term "energy consuming sources" covers a tremendous range of devices, equipment, and operations. As noted above, the thrust of this work was to focus on only a portion of the possible sources that might have been considered. Atmospheric emissions were of primary concern.


Generally, atmospheric emissions arise from energy consuming sources as a result of the combustion of fossil fuels. When fuels such as natural gas, fuel oil, coal, and gasoline are burned, a variety of gaseous and solid pollutants are created. Among these

pollutants are total suspended particulates (TSP), NO_2 , SO_2 , carbon monoxide, and hydrocarbons.

In and around Harris County, significant quantities of four of the above mentioned pollutants are emitted from both stationary and mobile sources (i.e., cars and trucks). The energy consuming sources of interest in this study are all stationary in nature. The impact of the emission from stationary sources of four of the five important air pollutants would be impossible to distinguish from similar emissions from mobile sources. It was therefore decided to concentrate primarily on SO_2 as the air pollutant of interest. Given the fact that gasoline and diesel fuel contain small amounts of sulfur, some SO_2 is emitted as the result of the operation of motor vehicles. However, the quantity of SO_2 emitted from mobile sources is inconsequential when compared with the amount of SO_2 emitted from stationary facilities.

The best indicator of the air quality impact of new, modified, and expanded energy consuming sources is ambient air SO_2 concentrations. Much work was done compiling an inventory of past, present, and predicted SO_2 emissions. Air quality data reflecting past ambient air concentrations of SO_2 was gathered. A sampling system capable of monitoring future ambient air SO_2 , NO_2 , and TSP concentrations is described in the following pages. Similar efforts could be (and sometimes were) expended to generate information related to other major pollutants. None of the others, however, can be directly related to increased activity associated with energy consuming sources. SO_2 is therefore the primary concern of this report.

ENERGY CONSUMING SOURCES

THE KINDS OF SOURCES

The dominant industrial activity in and around Harris County is related to the refining of petroleum and the subsequent conversion of the refined components into petrochemicals and derivative products. There are nine oil refineries located within fifty miles of Houston. These refineries supply large quantities of gasoline and fuel oil for direct consumption. In addition, they provide raw materials for a network of petrochemical and chemical plants. There are at least one hundred of the latter kind of facilities located in the counties of interest.

Power for these industrial facilities is generally provided in one of two ways. Either electricity is imported from fossil fuel fired electric generating plants located around the area, or fossil fuels are combusted in boilers and heaters situated within plant boundaries.

If power is generated within a plant by utilizing a boiler, the procedure involves burning a fossil fuel in a confined space and transferring the heat thus released through a metal surface to a supply of water. As the water absorbs heat, it boils and is converted to high pressure steam. The steam is in turn used to provide heat in a variety of unit operations.

If heaters are employed for energy utilization, the operation is quite similar. In a process heater, fossil fuels are again combusted in a confined space. The heat of combustion is transferred through a metal surface to a process fluid (as opposed to

water). The process fluid is thus heated to the desired temperature for subsequent reaction, distillation, or similar purpose.

Significant amounts of electricity are also utilized in industrial facilities in and around Harris County. For the most part, this electricity is purchased and imported from power plants in the area. At present, there are ten large fossil fuel fired electric generating plants operating within the study area.

The generation of electricity in a fossil fuel fired plant is a relatively simple process. The procedure is based upon producing steam in large boilers. Fossil fuel is combusted in a confined space, heat is transferred through a metal surface to a supply of water, and steam is created. The steam is used to drive a turbine which generates the desired electricity. Occasionally the process is more complex. Newer facilities may include combined cycle processes in which initial combustion takes place in a gas turbine.

All of the above mentioned processes have at least one factor in common. Each requires the combustion of a fossil fuel with the subsequent release of pollutants into the atmosphere. If the sulfur content of the fossil fuel utilized is low (as with natural gas), then the resultant SO_2 emissions will be low. If the sulfur content of the fossil fuel is significant (as with fuel oil and coal), then SO_2 emissions will be relatively large.

In the early 1970's, fossil fuel fired combustion units accounted for about 60% of all SO₂ emissions from stationary sources in Harris County (1).

Plants which produce sulfuric acid are also important with respect to atmospheric SO_2 emissions. In general terms, sulfuric acid is produced by the reaction of sulfur trioxide and water. Sulfur trioxide is obtained by the catalytic conversion of SO_2 . The SO_2 utilized in sulfuric acid production is normally obtained by burning elemental sulfur or spent sulfuric acid sludges. In the process, not all SO_2 generated is converted to sulfur trioxide. That portion not converted is normally vented to the atmosphere.

In 1973, sulfuric acid plants accounted for about 35% of all SO₂ emissions from stationary sources in Harris County (1).

There are numerous minor stationary sources of atmospheric SO_2 emissions in and around Harris County. Industrial, municipal, and commercial incinerators emit small quantities of the gas when sulfur bearing waste materials are burned. Chemical plants which operate sulfonation reactions typically emit SO_2 into the atmosphere. Generally however, these kinds of sources make a small contribution when compared with SO_2 emissions that arise from fossil fuel combustion and sulfuric acid manufacture.

NEW, MODIFIED, AND EXPANDED ENERGY CONSUMING SOURCES

Historically, most fossil fuel fired energy generating activity in and around Harris County was based on pipeline quality natural

gas. Natural gas has a very low sulfur content. As a result, SO₂ emissions from boilers and fired heaters tended to be small.*

The "energy crisis" changed the pattern of energy consumption at industrial facilities in the study area. A number of factors including an apparent shortage of natural gas, the Arab oil embargo of 1973, and Docket 600 of the Railroad Commission of Texas (this regulation required the eventual curtailment of the use of natural gas in utility boilers) catalyzed the search for alternate means of generating steam and electricity.

As a result of the search for alternate ways to generate power, many industrial operators applied to the TACB for permission to modify existing boilers and heaters for the purpose of combusting fuel oil and coal. Additionally, in the past four or five years, most new refining, petrochemical, and chemical facilities have been permitted and built with the capability of firing fuel oil as well as natural gas. Between 3/5/72 and 6/30/79, the TACB approved permits for the construction, modification, and expansion of hundreds of energy consuming sources. The SO₂ emissions allowed by these permits totals more than 488,000 annual tons from industrial facilities located in the study area.

^{*}An exception to this statement is those boilers and heaters fired with "refinery gas". Refinery gas is a by-product of petroleum refining operations consisting of hydrogen, methane, heavier aliphatic hydrocarbons, and hydrogen sulfide. If the refinery gas in question was derived from sour crude oil, then its hydrogen sulfide content might be substantial. When combusted, hydrogen sulfide is converted to SO₂. Therefore, significant quantities of SO₂ were probably emitted from some boilers and heaters fired with gaseous fuel.

Approximately 291,000 annual tons were permitted from energy consuming sources built, modified, or expanded between 7/26/76 and 6/30/79. As a means of comparison, in 1972, actual SO₂ emissions from all stationary sources in the study area were estimated to be 162,000 annual tons (1).

Table I is a compilation of total permitted SO_2 emissions as a function of time for the period 3/5/72 to 6/30/79. Clearly, the amount of SO_2 that may legally be emitted from new, modified, and expanded sources has increased tremendously over the last seven years.

TABLE I

SO2 EMISSIONS PERMITTED FROM FACILITIES IN THE STUDY AREA

A YEARLY COMPILATION

Year 1972 Total SO ₂ Emissions Permitted During The Year (Tons) 6,380			
	Permitted	Total SO ₂ Emissions During The Year (Tons)	Year
		6,380	1972
1973 34,900		34,900	1973
1974 119,000		119,000	1974
1975 65,000		65,000	1975
1976 151,000		151,000	1976
1977 96,400		96,400	1977
1978 11,800	<i>i</i> .	11,800	1978
1979 2,400		2,400	1979

NOTE: The value for 1979 is accurate through 6/30/79.

Table II is a list of all energy consuming sources built, modified, or expanded between 7/26/76 and 6/30/79. To be included in this table, the new facility had to have received a TACB construction permit dated after $6/25/75^*$; it had to be part of a facility with total permitted SO₂ emissions greater than 100 tons per year; and it had to be located within the study area.

Table III depicts permitted SO_2 emissions by county for all facilities in the study area built, modified, or expanded between 7/26/76 and 6/30/79. As the table illustrates, the facilities listed in Table II may emit approximately 291,000 tons per year of SO_2 . Harris County facilities account for about 38% of that total.

Table IV is a compilation of all SO₂ emissions permitted in the study area between 3/5/72 and 6/30/79. Again, Harris County sources account for the largest share of the permitted emissions.

The Appendix contains a list of all TACB construction permits which allow SO₂ emissions from facilities built, modified, or expanded in the study area between 3/5/72 and 6/30/79.

^{*} TACB construction permits are valid for one year from the date of issue. For purposes of this study, all facilities permitted after 7/25/75 were assumed to be built, modified, or expanded after 7/26/76.

TABLE II

ENERGY CONSUMING SOURCES BUILT, MODIFIED, OR CONSTRUCTED

BETWEEN 7/26/76 AND 6/30/79

Facility	Construction Permit Number	Kind of Source	Permitted SO2 Emission Rate (Tons/Year)
Air Products - Channelview	7033	H ₂ /CO Plant	298
Air Products - La Porte	771B	Process Heater	311
Air Products - La Porte	4803	Steam Boiler	55
Amerada-Hess	6526	Steam Boiler Conversion	162
American Hoechst	5252	Process Heater	12
American Hoechst	5252A	Steam Boiler	1,010
American Hoechst	5252B	Steam Boiler	1,010
American Hoechst	5252C	Steam Boiler	1,010
American Hoechst	5252D	Process Heater	254
American Hoechst	5252E	Steam Superheater	675
Amoco - Chocolate Bayou	4483	Process Heater	14
Amoco - Texas City	3362	Steam Generator	2,270
Amoco - Texas City	3363	Steam Generator	2,430
Amoco - Texas City	3364	Steam Generator	2,960
Amoco - Texas City	4903	Process Heater	123
Anheuser Busch	5351	Boiler Conversion	867
Anheuser Busch	7079	Boiler	298
ARCO - Channelview	6386	Poly-MDI Unit	385

18 MA 200

Table II - continued			
Facility	Construction Permit Number	Kind of Source	Permitted SO2 Emission Rate (Tons/Year)
ARCO - Deer Park	3908	Boiler	837
ARCO Refinery	6065	Process Heater	5
Berwind Railway	5609	Flare	3,640
Big Three Big Three Big Three	2627A 4957 4960	Boiler Conversion Boiler Conversion Boiler Conversion	613 2,540 845
Big Three Big Three	4961 4964		3,780 2,280
Cameron Iron	4813	Boiler Conversion	561
Champion Paper Champion Paper	6002 6003	Recovery Boiler Conversion Marine Boilers Conversion	1,040 1,240
Charter International Oil Charter International Oil	2507 2508	Sulfur Recovery Unit Sourwater Stripper	2,250 1,730
Cities Service	3956A	Process Heater	110
Columbian Carbon	3601	Process Heater/Boiler	153
Crown Central Petroleum Crown Central Petroleum	5953 6059	Process Heaters Sulfur Recovery Unit	53 14
Diamond Shamrock - Deer Park Diamond Shamrock - Deer Park Diamond Shamrock - Deer Park Diamond Shamrock - Deer Park	1522 4528A 5128A 5240	Boiler Conversion Boiler Conversion Boiler Conversion Boiler Conversion	1,360 753 950 1,680

Facility	Construction Permit Number	Kind of Source	Permitted SO2 Emission Rate (Tons/Year)
Diamond Shamrock - Greens Bayou	4893	Boiler Process Heater	244
Diamond Shamrock - Independence	3855	VC Plant	2,220
DuPont DuPont DuPont DuPont	2621A 4019 5034	Steam Generator Steam Generator Process Heater Process Heater	1,070 2,160 22 35
Duval Corporation	3735	Boilers	420
Eddy Refining Eddy Refining Eddy Refining	3697 4709 5211	Steam Generators Fired Heater Fired Heater	136 29 29
Ethy] Ethy]	3962 4551	Process Heater Process Heater	98 66
Exxon Chemical - Baytown Exxon Chemical - Baytown	3452 3871 4600 5019 5121 5555 4831	Olefins Plant Steam Generator Process Heater Process Heater Process Heater Process Heater Process Heater	5,620 5,620 1,180 850 850 380
Exxon Refinery	49/3 5330	Gas lurbine Process Heater	390 385

「ないの大い」とない

Table II - continued

Facility	Construction Permit Number	Kind of Source	Permitted SO2 Emission Rate (Tons/Year)
GAF	6918	Boiler Conversion	946
Georgia Pacific	4825	Process Heater	368
Gulf Chem. & Met.	5094	Tin Smelting Plant	447
Gulf Coast Portland Cement	5100	Cement Kiln Conversion	2,720
Houston Fuel Oil	5783	Terminal	201
H. L. & P Bertron H. L. & P Bertron	4484 4485	Boiler Boiler	24 24
H. L. & P Cedar Bayou	1532	Boiler Conversion	46,700
H. L. & P Parish H. L. & P Parish H. L. & P Parish	2348A 2349A 5530	Steam Generator Steam Generator Boiler	33,800 33,800 30,100
ICI - United States ICI - United States ICI - United States	3619 4717 4719	Process Heater Process Heater Reactor	118 1 11
Ideal Cement	5321A	Cement Kiln Conversion	2,860
Koppers Koppers	5359 6467 7443	Process Heater Process Heater Process Heater	28 84 5
Lubrizol - Deer Park	4688	Steam Generator Conversion	657

Table II - continued

Table II - continued			
Facility	Construction Permit Number	Kind of Source	Permitted SO2 Emission Rate (Tons/Year)
L Lady	3100	volica	3 600
Shell	3200	Boiler	3,570
Shell	3201	Boiler	3.570
She11	3202	Process Heater	14,600
Shell Shell	4596 6713	Incinerator Pyrolysis Furnace	13 79
Stauffer - Houston	4802	Process Heater	5,100
Syngas	4773	Process Heater	854
Tenneco	4545	Steam Generator	898
Texas City Refining Texas City Refining Texas City Refining Texas City Refining	2940 4393 4499 4797	Sour Water Stripper Process Heater Sulfur Plant Process Heater	823 806 52
Texas Industries	4534A	Fuel Conversion - Coal	2,100
Union Carbide - Deer Park Union Carbide - Deer Park Union Carbide - Deer Park Union Carbide - Deer Park	4861 4862 4863 4864	Boiler Conversion Plant Heater Boiler Plant Heater	40 193 164 248
Union Carbide - Texas City	2958A	Boiler	5,260
United Salt	5935	Boiler	188
Upjohn Upjohn	1483A 4221	Steam Generator Steam Generator	1,330

Facility	Construction Permit Number	Kind of Source	Permitted SO2 Emission Rate (Tons/Year)
USI - Chemicals	5226	Steam Boiler	561
Witco Chemical	3874	Steam Generator	66
Witco Chemical	3874	Steam Generator	

TABLE III

PERMITTED SO₂ EMISSIONS FROM FACILITIES CONSTRUCTED BETWEEN 7/26/76 AND 6/30/79

County	Permitted SO ₂ Emissions (Tons/Year)	Number of Permits	Number of Facilities
Harris	102,000	92	44
Fort Bend	100,000	5	3
Chambers	51,200	5	4
Galveston	22,300	14	8
Brazoria	14,000	5	2
Montgomery	150	1	1
	289,650	122	62

TABLE IV

County	Permitted SO ₂ Emissions (Tons/Year)	Number of Permits	Number of Facilities
Harris	264,000	205	59
Fort Bend	100,000	5	3
Galveston	58,200	38	9
Chambers	51,200	5	4
Brazoria	14,500	11	2
Montgomery	150	1	1
	488,050	265	78

PERMITTED SO₂ EMISSIONS FROM FACILITIES CONSTRUCTED BETWEEN 3/5/72 AND 6/30/79

ACTUAL SO2 EMISSIONS

As the preceding section of this report illustrates, the amount of SO_2 that may be emitted into the atmosphere over Harris County has increased significantly in the last seven years. If actual 1972 SO_2 emissions were added to SO_2 emissions permitted subsequent to 1972, 648,000 tons of SO_2 could have been emitted into the atmosphere during 1979.

The amount of SO₂ that is actually emitted into the atmosphere was unknown prior to this study. The TACB compiled an inventory

of atmospheric emissions originating at industrial sources in 1972, 1973, and 1975. An emissions inventory has not been compiled since 1975.

As a part of this study, an effort was made to define atmospheric SO_2 emissions for the period after 1975. A questionnaire was devised and sent to the operators of seventy-eight major industrial facilities. Information related to SO_2 emissions from permitted facilities, SO_2 emissions from facilities built before the permit system was implemented, fuel oil usage, and coal usage for the years 1976, 1977, 1978, and 1979 was solicited (a sample questionnaire is included in the Appendix).

The cooperation received from industrial operators with respect to the questionnaire was generally good. Responses were received from seventy-four percent of the facilities questioned.

Questionnaire responses yielded interesting and useful data on fuel use patterns and SO₂ emissions data. Table V contains information about 1976, 1977, and 1978 fuel use patterns in the study area. Based on the responses received, fuel oil usage increased by more than a factor of four during the three year period. Coal usage increased by more than thirty times over the same period. Clearly however, both fuel oil and coal usage remains small compared with total fossil fuel requirements.

TABLE V

FUEL USE PATTERNS IN STUDY AREA

1976 - 1978

Year	Fuel Oil Consumed (1,000's of Tons)	Coal Consumed (1,000's of Tons)
1976	500	19
1977	1,900	22
1978	2,300	640

NOTE: This table is based on data received from fifty-eight facilities.

Table VI contains a compilation of data regarding actual SO_2 emissions from permitted sources in the study area. As the table indicates, SO_2 emissions from new, modified, and expanded energy consuming sources has increased over the years. In 1978, SO_2 emissions from these sources were more than 39,000 tons. The indicated increase in actual emissions is surprisingly small. As noted in Table IV, SO_2 emissions from permitted facilities could legally be as much as 488,000 tons per year. In 1978, actual SO_2 emissions from all permitted facilities were apparently less than 10% of that value.

TABLE VI

ACTUAL SO2 EMISSIONS FROM PERMITTED SOURCES

1976 - 1978

Year	SO2 Emissions From Facilities Permitted Between 3/5/72 & 7/25/75 (Tons)	SO2 Emissions From Facilities Permitted Between 7/26/75 & 6/30/79 (Tons)
1976	9,250	4.5
1977	22,000	4,410
1978	24,200	14,800

<u>NOTE</u>: This table is based on data received from fifty-eight facilities. See the Appendix for a compilation of SO₂ emissions from individual facilities.

In an effort to better illustrate the possible influence of SO_2 emissions on Harris County, several figures have been prepared. Figure I is a map which depicts permitted SO_2 emissions for energy consuming sources built, modified, and expanded between 3/5/72 and 6/30/79. Figure II is a map which depicts permitted SO_2 emissions from energy consuming sources built, modified, and expanded between 7/26/76 and 6/30/79. Figure III is a map which depicts actual SO_2 emissions for the year 1978 from those energy consuming sources permitted after 7/25/75.

These maps clearly indicate three important points:

 SO₂ emission sources are concentrated along the Houston Ship Channel.

- The whole of Harris County is subject to atmospheric SO₂ exposure.
- The amount of SO₂ which is actually emitted is small compared with the amount that can be legally emitted.

AIR QUALITY DATA BASE

BACKGROUND

In Harris County, routine ambient air sampling is conducted by the City of Houston Bureau of Air Quality Control (the City) and the Texas Air Control Board (TACB). Each agency maintains a sampling network designed primarily to monitor the "criteria pollutants" designated by the U. S. Environmental Protection Agency (EPA). The data collected by these networks is summarized and published annually by the TACB. Additionally, the City publishes quarterly reports indicating ambient air concentrations detected by the instruments in their network. The contents of these reports constitute the available air quality data base for Harris County. See the Appendix for a list of air quality data reports.

During 1978, there were forty-three sites in Harris County at which the City or the TACB collected non-continuous air quality data. Once every six days, equipment at these sites is actuated to collect a twenty-four hour composite ambient air sample. Each of the sites is equipped with a high volume air sampler used to monitor TSP concentrations. Thirty-eight of the sites are also equipped with diffusion bubbler equipment designed to detect ambient air concentrations of SO_2 , NO_2 , and other gaseous pollutants.

At the non-continuous sites, SO_2 is detected by the West-Gaeke method.* NO_2 is detected by the Christie method. These and

^{*}In 1978 the TACB abandoned the West-Gaeke method of SO₂ detection in favor of a method involving absorption in a carbonate solution followed by analysis based on ion chromatography.

other air quality analysis methods are discussed in more detail in the next section of this report.

Between them, the City and the TACB also maintain nine sites at which continuous ambient air sampling equipment is operated. The City is responsible for six of these locations. One of their sites is equipped with a continuous SO_2 analyzer; two are equipped with NO₂ analyzers. The TACB operates three continuous monitoring sites (the third one became operational in December, 1978). All three TACB sites have the capability of monitoring SO_2 and NO_2 .

At the continuous sites, SO₂ analysis is done by a gas chromatograph equipped with a flame photometric detector. Continuous NO₂ analysis is accomplished by chemiluminescence.

COMMENTS ON THE DATA

The TACB and the City participate in a joint ambient air data quality assurance program. The TACB has reported that during 1978, 95% of the analysis of particulate matter samples performed by air pollution agencies around the state were accurate to within $\pm 20\%$ (2). This value is believed to represent the precision of the particulate matter analytical method.

The precision of data reported for gaseous air pollutants is probably not as good. The non-continuous methods of detecting gaseous air pollutants depend on absorbing gases in liquid chemicals. These chemicals must be prepared in laboratories and transported to the monitoring site where they will be used. Once the pollutants of interest are absorbed, the liquids are returned to the lab where

detection is done by wet chemical methods. Final results are subject to errors introduced by initial preparation of chemicals, analytical procedures, as well as interaction of bubbler liquids with factors in the surrounding environment (heat effects and interference by other atmospheric constituents are both important considerations).

Ambient air quality data is reported on several time bases. Most continuous data is reported as an hourly average. Noncontinuous data is normally reported as a twenty-four hour average value. Depending on the pollutant in question, three hour and eight hour averages may also be of importance. Annual averages are often reported for the criteria pollutants. These averages are computed values. They may be derived from hourly averages if based on continuous data, or from twenty-four hour composites if based on non-continuous data.

The data base reported in this study is limited to annual averages. The choice to consider only annual averages was made primarily on the basis of simplicity and brevity. Air quality reports listed in the Appendix contain hundreds of pages of information related to data reported as hourly, three hour, eight hour, and daily averages.

In principle, an annual average pollutant concentration can be derived from either continuous or non-continuous data. In practice, the continuous monitors located in Harris County have not met EPA's criteria for calculating annual averages.

The annual means reported herein are therefore all based on noncontinuous data.

Table VII is a compilation of primary ambient air quality standards for SO₂, NO₂, and TSP. Each value shown is an annual average. By definition, a primary standard represents the maximum pollutant concentration acceptable in terms of the protection of human health. The table is included as a means of illustrating the significance of Harris County air pollution concentrations as measured during the past six years.

TABLE VII

PRIMARY AMBIENT AIR QUALITY STANDARDS FOR THREE CRITERIA AIR POLLUTANTS

Air Pollutant	Primary Ambient Air Quality Standard (Annual Average)
Sulfur dioxide	80 µg/m ³
Nitrogen dioxide	100 µg/m ³
Particulate matter	75 µg/m ³

 $\underline{\text{NOTE}}\colon$ SO_2 and NO_2 standards are arithmetic means; the particulate matter standard is a geometric mean.

SULFUR DIOXIDE DATA

Figure IV is a map which summarizes ambient air SO₂ data for non-continuous monitors. The values shown on the map represent annual arithmetic means for the years 1973 through 1978. The data

is depicted on the map at the location of the sampling site where the individual values which comprise the average were actually monitored. Each sampling site is identified by its agency code number. It should be noted that some of the values indicated on the map do not meet the EPA minimum criteria for calculating annual means.

As the map indicates, the primary ambient air quality standard for SO_2 has never been exceeded. However, it is clear that SO_2 concentrations are higher at sites closer to the Houston Ship Channel than at other places in the County. This is to be expected, as most large SO_2 sources are located along the Ship Channel. Table VIII compares SO_2 concentrations at fourteen Ship Channel sites with SO_2 concentrations at twenty-two other sites in the County.

TABLE VIII

A COMPARISON OF ANNUAL AVERAGE SO₂ CONCENTRATIONS AT SHIP CHANNEL SITES AND OTHER COUNTY SITES

Year	SO2 Concentrations at Ship Channel Sites (µg/m ³)	SO ₂ Concentrations at Other County Sites (µg/m ³)
1973	18	4
1974	17	4
1975	9	4
1976	7	2
1977	8	3
1978	8	6

The reported SO₂ data has other interesting aspects. A review of the data reported at TACB sites in 1978 indicates a significant increase which is probably related to a change in analytical method.

In 1978, the TACB abandoned the West-Gaeke method of analysis for SO₂. This change was made because of negative interference believed to be a result of heat effects at the sampling site. The current analytical method is less subject to variation due to temperature fluctuation.

Data reported from City sites in 1978 do not reflect an increase in SO_2 ambient air concentrations. The City still uses the West-Gaeke method of analysis; therefore most of the TACB data and all of the City data may be conservative with respect to actual SO_2 ambient air concentrations.

As Table VIII indicates, there was an apparent decrease in ambient air SO_2 concentrations between 1974 and 1975 as measured at Ship Channel sites.

Perhaps the most significant aspect of the data is that SO₂ concentrations are relatively low, and they have not increased significantly since 1973.

NITROGEN DIOXIDE DATA

Figure V is a map which summarizes ambient air NO₂ data. The values shown on the map represent annual arithmetic means for the years 1973 through 1978. The data is depicted on the map at the

location of the sampling site where the individual values which comprise the average are actually monitored. Each sampling site is identified by its agency code number. It should be noted that some of the values indicated on the map do not meet the EPA minimum criteria for calculating annual means.

As the map indicates, NO₂ ambient air concentrations are significant when compared with the primary ambient air quality standard. In fact, in 1973, annual averages at several sites actually exceeded the primary standard.

Since 1973, the ambient air concentration of NO₂ appears to have decreased somewhat.

If the NO₂ data is grouped in a particular way, a trend is apparent as shown in Table IX. For a given year,

- average the NO₂ data reported at all sites in the County,
- average the NO₂ data reported at only those sites located inside Loop 610, and
- 3) average the NO₂ data reported at only those

sites located in or near downtown Houston.

When this is done, it can be seen that in every year the ambient air NO_2 concentrations decrease as the distance from the inner city increases. This suggests that NO_2 concentrations are more dependent on mobile sources of air emissions than on industrial sources.

TABLE IX

ANNUAL AVERAGE NO2 CONCENTRATIONS AS A FUNCTION

Year	NO ₂ Concentration in or near Downtown Houston (µg/m ³)	NO ₂ Concentration Inside Loop 610 (µg/m ³)	NO ₂ Concentration Countywide (µg/m ³)
1973	142	116	86
1974	91	81	65
1975	89	69	56
1976	83	59	48
1977	79	63	52
1978	81	63	56

OF DISTANCE FROM THE INNER CITY

TOTAL SUSPENDED PARTICULATE

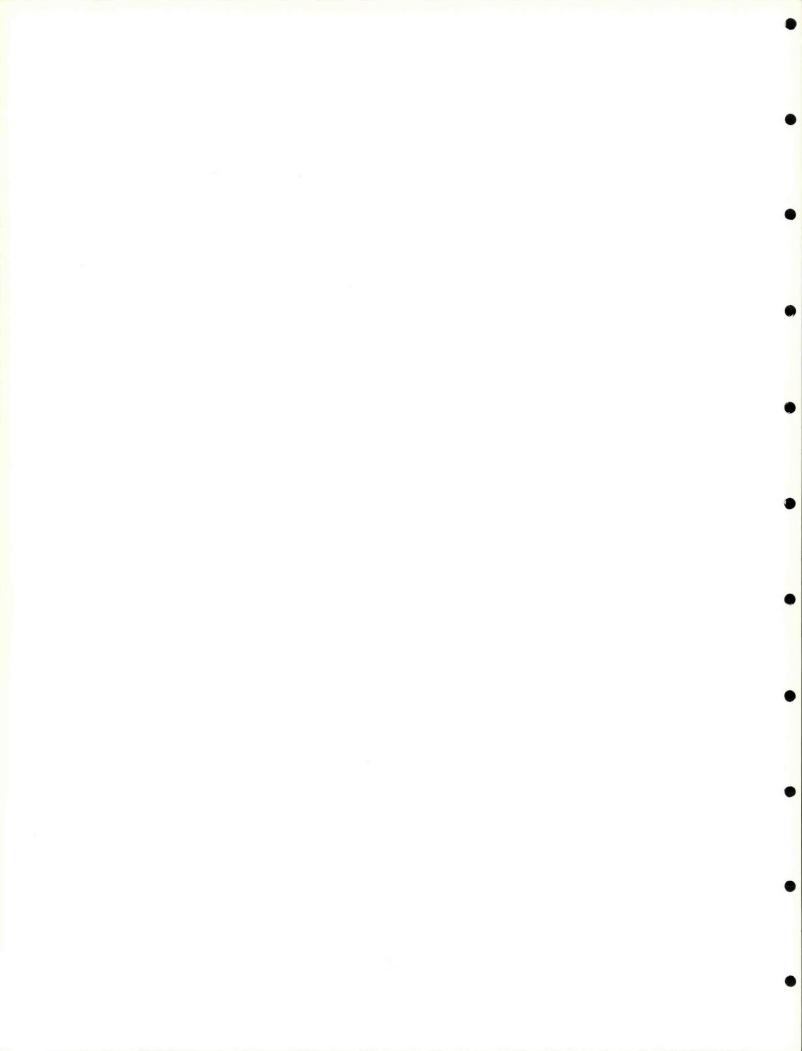
Figure VI is a map which summarizes ambient air TSP data. The values shown on the map represent annual geometric means for the years 1973 through 1978. The data is depicted on the map at the location of the sampling site where the individual values which comprise the average are actually monitored. Each sampling site is identified by its agency code number. It should be noted that some of the values indicated on the map do not meet the EPA minimum criteria for calculating annual means.

Ambient air concentrations of TSP represent a significant problem. During the six year period studied, the primary standard for TSP was equaled or exceeded a total of seventy-five times at twenty-three sites.

There is no apparent single cause to explain the multiple standard violations. The City and the TACB have stated that most TSP problems are the result of fugitive dust emissions related to traffic, materials handling, and construction activities (3). Particulate emissions from industrial activity also contribute. Should energy use patterns change to increased reliance on fuel oil and coal, this air pollution problem may become worse.

Table X includes data which indicates the highest annual average TSP concentration that was recorded at selected sampling sites between 1973 and 1978. The sites included in the table are those at which at least one violation of the primary standard has been observed.

TABLE X


MAXIMUM ANNUAL AVERAGE TOTAL SUSPENDED PARTICULATE CONCENTRATIONS AT SOME HARRIS COUNTY SAMPLING SITES: 1973-1978

Sampling Site Designation	Year in Which Maximum Value Was Observed	Maximum Annual Geometric Mean TSP Concentration (µg/m ³)
Cams 1	1973	103
Bayway	1976	83
Park	1974	82
H-12	1978	75
H-13	1974	76

TABLE X -	continued
-----------	-----------

Sampling Site Designation	Year in Which Maximum Value Was Observed	Maximum Annual Geometric Mean TSP Concentration (µg/m ³)
H-15	1978	102
H-18	1973	102
DP-22	1976	101
H-23	1977	89
DP-1	1974	81
H-21	1973	79
H-17	1975	90
P-2	1973	85
H-04	1978	91
T-5	1978	157
H-19	1978	123
T-25	1978	88
H-14	1978	95
H-02	1975	104
H-05	1973	103
H-01	1975	97
T-19	1977	76
H-09	1977	78

AMBIENT AIR MONITORING EQUIPMENT EVALUATION AND SITE LOCATION

INTRODUCTION

The change in energy use patterns which is expected to take place in Harris and surrounding counties may tend to elevate ambient air concentrations of SO_2 , NO_2 , and TSP. Existing ambient air quality data has been summarized in the preceding section of this report.

The purpose of the following paragraphs is to develop the background for a sampling network sufficient to provide accurate and timely data related to changes in ambient air concentrations of SO₂, NO₂, and TSP for all of Harris County. Available analytical methods are discussed. An evaluation of monitoring instruments which might be utilized in a sampling network is presented. And finally, a proposal for a comprehensive ambient air monitoring network is delineated.

AVAILABLE ANALYTICAL METHODS

There are four EPA approved methods for the determination of sulfur dioxide. The Pararosaniline or modified West-Gaeke procedure is the EPA reference method. In this analytical method, SO₂ is absorbed in a solution of potassium tetrachloromercurate. A red-violet color is developed at a later time by the addition of reagents. The color intensity developed is a function of the concentration of absorbed SO₂ and is measured using a spectrophotometer or colorimeter. The SO₂ tetrachloromercurate complex formed during the absorption is thermally unstable; an SO₂ loss of 1% -

3% per day has been noted. At high ambient temperatures the loss rate is much higher; therefore, the sooner the analysis can be done the more accurate the determination can be. There is evidence that the SO₂ tetrachloromercurate complex is photo-reactive; wrapping the impingers with aluminum foil provides some protection. The absorber efficiency is influenced by collection rate as well as temperature during and after sample collection. Reducing the temperature of the potassium tetrachloromercurate absorber solution also reduces the absorber efficiency.

This analytical method requires extensive laboratory wet chemistry in the preparation of reagents - some of which must be prepared daily due to their degradability. The few advantages of this method of analysis for SO₂ include a relatively small capital investment and a high degree of portability for the actual sample device. This method at best shows only the average SO₂ concentration from time start to time stop. The method does not indicate highs and lows, nor will it reveal trends over short periods of time.

There are two automated analytical systems for SO₂ that utilize the pararosaniline method. These are the Atmosphere - Technicon I and the Atmosphere - Technicon II. Both automated systems were developed by the EPA. These systems require the same wet chemistry as the manual pararosaniline method for the determination of SO₂. The samples must likewise be taken with an impinger system and then are introduced into the automatic analysis system. These systems were not evaluated in detail.

The next EPA method for the detection of SO2 in the atmosphere is coulometric. In this method, a gas stream is continuously bubbled through a solution of potassium bromide and sulfuric acid contained in a reaction cell. The SO2 is trapped by reacting it with electrolytically generated bromine. The bromine concentration is automatically maintained at a constant value by means of sensing electrodes which match the rate of bromine generation to the quantity of SO₂ reacted. The bromine generating current is monitored and varies proportionally to the amount of SO_2 present in the sample. Philips Electronic Industries is the source for two of the three coulometric instruments designated as equivalent methods by the EPA. These are the Philips PW 9755 and the Philips PW 9700; both instruments are manufactured in Holland and have the highest initial capital cost of any EPA SO2 designated system avail-The third coulometric type instrument is manufactured by able. Asarco Incorporated. These instruments were not available for evaluation. Apparently they are no longer sold in the United States.

The next method for the detection of SO_2 in the atmosphere utilizes the flame photometric detection method (FPD). The operating principle of the FPD utilizes the photometric detection of the 394 nanometer spectral band emitted by sulfur containing compounds in a hydrogen rich flame. There are four FPD instruments recognized by the EPA as equivalent methods for the detection of SO_2 in the atmosphere. These four instruments are discussed in detail under the next heading in this section. R

The next type of instrument designated by the EPA as an equivalent method in the analysis of atmospheric SO_2 is pulsed ultraviolet fluorescence. The principle on which this instrument is based is: pulsed ultraviolet light passes through a narrow bandpass filter to a measurement chamber where it excites SO_2 molecules. As these molecules return to their ground state they fluoresce. The intensity of the fluorescence is linearly proportional to the concentration of SO_2 molecules in the sample. The fluoresced light then passes through a second filter to illuminate the sensitive surface of a photomultiplier tube. Electronic amplification of the output of the photomultiplier tube provides a meter reading and an electronic analog signal for recorder output. There are at least three commercially available SO_2 analyzers based on this principle.

There are two EPA approved methods for the determination of NO₂. The sodium arsenite or modified Christie method is the EPA reference method. Utilizing this method, NO₂ is absorbed in a sodium arsenite solution to form sodium nitrite. The concentration of nitrite ions is measured after the addition of reagents which develop a color. The intensity of the color is proportional to the concentration of nitrite ions present and is measured using a spectrophotometer or colorimeter.

There are few interferences with this test. Nitric oxide (NO) does not appear to interfere to any significant extent. SO_2 interferes slightly to the extent that 100 µg/m³SO₂ gives a negative response equivalent to 3 µg/m³NO₂.

This method requires extensive laboratory wet chemistry in the preparation of reagents - some of which must be prepared daily due to their degradability. The few advantages to this method of analysis of NO₂ include a relatively small capital investment and a high degree of portability for the actual sample device. This method only shows the average NO₂ concentration; it does not indicate highs or lows.

There is one automated method which utilizes the sodium arsenite wet chemistry. It is the Technicon II automated analysis system. This system requires the same reagents and laboratory backup except that the impinged samples are introduced into the Technicon II for automatic titration and analysis.

There is a single instrumental method for the analysis of oxides of nitrogen in the ambient air. The method is chemiluminescence. It is based on the principle that NO reacts with ozone (O₃) to produce electrically excited NO₂ and oxygen. Following the NO - O₃ reaction, the electrically charged NO₂ molecules revert to a normal energy state thereby emitting photons that produce a light emission directly proportional to the NO concentration in the ambient air sample. To determine NO_X (NO + NO₂) concentration, the sample is first routed through a converter where the NO₂ is converted to NO and is then routed to a reaction chamber for analysis. NO₂ concentrations are determined by an electronic subtraction circuit that automatically calculates the difference for a direct NO₂ output.

The only EPA designated method available for determining the ambient air concentration of TSP is the high volume method. In this method, a measured amount of ambient air is passed through a pre-weighed, non-hygroscopic filter paper. The filter is removed from the sampler and returned to a laboratory where it is held at 50% relative humidity for twenty-four hours. The filter is then weighed to determine particulate weight. Knowing particulate weight and flow rate of air through the filter, it is possible to calculate the ambient air TSP concentration.

INSTRUMENT EVALUATION

As a part of this project, an instrument evaluation was performed. The purpose of the evaluation was to review the performance characteristics of a number of ambient air monitoring devices. This review provided information about the possible suitability of various instruments as components in an ambient air sampling system. Of particular importance was the need to determine if the instruments available were capable of reliably detecting SO₂ and NO₂ in ppb ranges of 0 - 50. Additionally, an effort was made to determine if the several instruments tested would perform satisfactorily under simulated monitoring conditions.

The instrument evaluations were done under "hands-on" conditions in most cases; i.e., the instruments considered were operated and observed in the Harris County Pollution Control Department laboratory. Operation of the instruments was evaluated in actual sampling modes. Zero and span were checked on initial start-up and

after twenty-four hours of continuous operation. Instrument drift and electrical noise were observed. In short, a concerted effort was made to verify that a particular instrument had the capability of reliably and accurately detecting the air pollutant of interest.

The course of the evaluation generally followed procedures outlined in references (4) and (5). The evaluation results are discussed below. Recommendations concerning the best choice of instruments to continuously monitor ambient air SO_2 and NO_2 are presented.

SO2 ANALYZERS - FPD

Four SO₂ analyzers which utilize the FPD method of detection were evaluated.

MELOY SA 285E

The first instrument evaluated was the Meloy Laboratories SA 285E Sulfur Analyzer. This was the only instrument evaluated which is EPA certified at the expanded scale, low-level of detectability, 0.05 ppm or 50 ppb full scale. This capability made the instrument extremely interesting since baseline SO₂ values are expected to be 10-30 ppb. The instrument responded excellently in the zero and span modes and had very little drift. The only difficulty encountered involved flame-out problems. The instrument does have automatic hydrogen shut-off due to flame-out or loss of power and there is a flame-out indicator with automatic electronic re-ignition.

The Meloy SA 285E had the following favorable Points:

- 1. Excellent operating characteristics.
- 2. Stable sample air flow of 200 ml/minute.
- Excellent zero and span adjustability and reproducibility.
- 4. Optional remote zero and span availability.
- 5. Optional timed zero and span availability.
- 6. Excellent linearity through the four ranges.
- 7. Insensitive to vibration.
- 8. Can be rack or shock mounted.
- 9. Insensitive to temperature fluctuations.
- Broad operating ambient temperature range:
 10° 40° C.
- 11. Insensitive to electrical noise.
- 12. Components are accessible for maintenance and troubleshooting.
- 13. Built in troubleshooting aids.
- Circuit boards are interchangeable with those of the Meloy NA 530R NO₂ analyzer.
- 15. In-house repairability is excellent.
- 16. Parts availability is good.
- 17. Training school is offered.
- Capability of remote diagnoses of some malfunctions.

19. Required preventive maintenance is low.

20. Manual is well reproduced and illustrated.

21. Manual troubleshooting section is thorough.

22. Low operating range: 0 - 50 ppb.

23. Low signal lag time: 10 seconds maximum.

24. Low rise or fall time: 2 minutes maximum.

25. Low detectable limit: 2 ppb.

The Meloy SA 285E had the following unfavorable points:

1. Requires hydrogen.

2. Exhibited flame-out problems.

Has relatively high interferent levels;
 20 ppb each interferent (maximum) and

60 ppb total interferent (maximum).

MELOY SA 185-2A

The Meloy SA 185-2A is also EPA designated, but not in the low ranges of the SA 285E. This instrument is very similar to the SA 285E and was not evaluated further.

MONITOR LABS MODEL 8450

The Monitor Labs Model 8450 Sulfur Monitor is also based on FPD. This instrument makes claims of performance equal to or better than the Meloy SA 285E. This instrument was not available for evaluation.

BENDIX MODEL 8303

The Bendix Corporation Model 8303 Sulfur Analyzer is an FPD instrument. This instrument was not made available for evaluation, but was demonstrated by a vendor. The instrument measures SO_2 , H_2S , and total sulfur.

The Bendix 8303 had the following favorable points:

- Low signal lag time; 18 seconds in SO₂ mode.
- 2. Low response time: 30 seconds maximum.
- Low rise and fall time: 25 seconds maximum.
- Low zero and span drift: less than 2% for three days.
- Broad operating ambient temperature range:
 5° 40° C.
- Independent range, span and zero controls for each component (hydrogen sulfide, sulfur dioxide, and total sulfur).
- 7. Linear output.
- 8. Good zero/span adjustability.
- 9. Good linearity between ranges.

10. Insensitive to vibration.

- 11. Insensitive to electrical noise.
- 12. Trouble shooting aids and diagnostics.

The Bendix 8303 had the following unfavorable points:

- 1. Requires hydrogen.
- Has relatively high interferent level:
 30 ppb.
- High minimum detectable sensitivity:
 5 ppb.
- 4. High linearity requirement: 10 ppb.
- 5. Temperature sensitive.

SO2 ANALYZERS - PULSE FLUORESCENCE

Three pulsed fluorescence type SO₂ monitoring instruments were evaluated. Some important characteristics of each are listed below.

THERMO ELECTRON CORP. MODEL 43

The Thermo Electron Corporation Model 43 is a true pulsed fluorescence type instrument. The UV lamp is actually switched on and off at 4 microsecond intervals rather than being mechanically chopped.

The Thermo Electron 43 had the following favorable points:

- 1. Good zero and span adjustability.
- 2. Remote zero and span control availability.

3. No need for support gases or reagents.

- 4. Good instrument linearity between scales.
- 5. Insensitive to vibration.
- 6. Insensitive to temperature changes.
- 7. Insensitive to electrical noise.
- 8. Excellent component accessibility.
- 9. Built-in troubleshooting aids.
- Circuit boards interchangeable with TECO
 14 B/E or D/E.
- 11. Excellent in-house repairability.
- 12. Good parts availability.
- 13. Training is offered.
- Remote diagnostics of some malfunctions available.
- 15. Low required preventive maintenance.
- 16. Good operating characteristics.
- 17. Stable sample air flow.
- 18. Can be rack or shock mounted.
- Broad operating ambient temperature range;
 5° 40° C.
- 20. Manual is well written and reproduced.
- 21. Low signal lag time: 10 second maximum,
- 22. Low rise and fall time: 2 minute maximum,
- 23. Low detectability limit: 2 ppb.
- 24. Low interference equivalent; 11 ppb.
- No heated or temperature controlled chambers required.

26. Insensitive to flow variations.

The Thermo Electron 43 had the following unfavorable point:

Zero drift excessive: factory specs allow
 1% of full scale.

BECKMAN INSTRUMENTS MODEL 953

The Beckman Instruments Model 953 Fluorescent Ambient SO₂ Analyzer is a mechanically chopped UV fluorescence instrument. This instrument did not perform satisfactorily. The rise and fall times were excessive. They often exceeded 15 minutes. The instrument evaluated exhibited a negative drift, and it was hard to maintain zero or span without frequent potentiometer adjustments. The automatic hydrocarbon cutter required a temperature of 400° C. The manual was poorly written and did not include a pictorial or exploded view of the instrument showing component location or breakdown of individual components. This instrument did not perform according to the manufacturer's specifications.

The Beckman 953 had the following favorable points:

1. Remote zero and span control availability.

- 2. Good linearity when switching ranges.
- 3. Insensitive to vibration.
- 4. Insensitive to electrical noise.
- 5. Good component accessibility.
- 6. Built in diagnostics.
- 7. Training is offered.
- 8. Remote diagnostics capability.
- 9. No need for support gases or reagents.
- 10. Rack or shock mounting.
- 11. Internal zero air scrubber,
- 12. Flow system integrity gauge.
- 13. Automatic hydrocarbon cutter.
- Circuit boards interchangeable with Beckman
 952A oxides of nitrogen analyzer.

The Beckman 953 has the following unfavorable points:

- 1. Poor zero and span adjustability.
- 2. Poor zero and span reproduceability.
- 3. Poor parts availability.
- Requires periodic and frequent preventive maintenance.
- 5. Manual is poorly written and reproduced.
- 6. Slow response.
- Temperature controlled analysis section;
 110° F.

- Thermal automatic hydrocarbon cutter:
 400° C.
- Narrow operating ambient temperature range: 20° - 30° C.

LEAR SIEGLER MODEL SM1000

The Lear Siegler Model SM1000 sulfur dioxide ambient monitor also operates on the pulsed UV, fluorescence principle; however, the instrument utilizes a monochromator with a continuously rotating scanner to modulate the wavelength of fluoresced light as required. The instrument is termed by the manufacturer to be a "second derivative spectroscopy sulfur analyzer." This instrument was not evaluated.

In terms of an extensive ambient air monitoring network, the most effective way to monitor SO_2 concentrations is with a continuously operating instrument. In Harris County, the level of SO_2 concentrations that will have to be measured should range upward from a level of about 13 ppb. The method of SO_2 analysis chosen must be capable of detecting concentrations that small. On the basis of the instrument evaluation conducted as a part of this project, both the Meloy Laboratories SA 285E FPD sulfur analyzer and the Thermo Electron pulsed fluorescence Model 43 sulfur analyzer should provide satisfactory performance. These instruments worked equally well under test conditions.

NO2 ANALYZERS

There are eight instruments designated by EPA as equivalent methods for the detection of NO₂ in ambient air. Each instrument is based on the principle of chemiluminescence. Five of these instruments were evaluated.

COLUMBIA SCIENTIFIC INDUSTRIES MODEL 1600

The Columbia Scientific Industries Model 1600 oxides of nitrogen analyzer performed flawlessly. The manual adequately shows in drawing layouts the location of components. The instrument has excellent built in diagnostics and the trouble-shooting section is thorough. The instrument had excellent linearity when switched from one range to another.

The CSI Model 1600 NO₂ analyzer had the following favorable points:

- 1. Excellent sample air flow.
- 2. Excellent zero and span adjustability.
- 3. No need for support gases or reagents.
- 4. Remote zero and span control availability.
- 5. Excellent operating characteristics.
- 6. Excellent instrument linearity.
- 7. Excellent zero and span reproduceability.
- 8. Insensitive to vibration.
- 9. Insensitive to electrical noise.

10. Good component accessibility.

- 11. Excellent built-in diagnostics.
- 12. Good in-house repairability.
- 13. Good parts availability.
- 14. Training is offered.
- Remote diagnostic capability for some malfunctions.
- 16. Low required preventive maintenance.
- 17. Rapid switching of NO and NO $_{\chi}$ signals: 8 times/minute.
- Temperature regulated reaction chamber and PM tube.
- Built-in push button diagnostic display system.
- 20. Rack or bench mountable.
- Filter protected and thermally regulated flow controlling capillaries.
- 22. Stable over wide ambient temperature range: 10° - 40° C.
- 23. Low signal noise: 1 ppb.
- 24. Low detectable limit: 2 ppb.
- 25. Low total interference equivalent: 10 ppb.
- 26. Low zero drift: 1 ppb.
- 27. Low span drift.
- 28. Low lag time: 8 seconds.
- Low signal rise/fall time: selectable time constant.

High operating humidity range: up to
 95%.

The CSI Model 1600 NO₂ had no readily discernible unfavorable points.

BENDIX MODEL 8101-C

The Bendix Model 8101-C oxides of nitrogen analyzer performed satisfactorily and had the following favorable points:

- 1. Excellent sample air flow.
- 2. Good zero and span adjustability.
- 3. Good zero and span reproduceability.
- 4. Good operating characteristics.
- 5. Good instrument linearity.
- 6. Insensitive to vibration.
- 7. Insensitive to electrical noise,
- 8. Good component accessibility.
- Temperature regulated reaction chamber and PM tube.
- 10. Rack or bench mountable.
- Stable over wide ambient temperature range: 5° - 40° C.
- 12. Low signal noise: 2 ppb.
- 13. Moderately low detectable limit: 5 ppb.
- 14. Low interference equivalent: 10 ppb.
- 15. Moderately low zero drift: 5 ppb.

- 16. Low span drift: 10 ppb.
- 17. Short time cycle between NO and $\text{NO}_{\chi}\text{:}$ 23 seconds.

18. Remote zero and span capability.

The Bendix Model 8101-C oxides of nitrogen analyzer had a single unfavorable feature. It does not have a system of built-in diagnostics.

MELOY NA 530R

The Meloy NA 530R oxides of nitrogen analyzer performed satisfactorily. This instrument has dual chambers for NO and NO_X; NO₂ is yielded by subtraction of constant signals. This is the only instrument EPA certified in a low expanded range of 0 – 100 ppb full scale. This factor was important since baseline NO₂ values are expected to be 20 – 50 ppb.

The Meloy NA 530R oxides of nitrogen analyzer had the following favorable points:

1. Excellent sample air flow.

2. Good zero and span adjustability.

3. No need for support gases or reagents.

4. Remote zero and span control availability.

5. Timed zero and span availability.

6. Excellent operating characteristics.

7. Good instrument linearity.

8. Good zero and span reproduceability.

- 9. Insensitive to vibration.
- 10. Insensitive to electrical noise.
- 11. Good component accessibility.
- 12. Excellent built-in diagnostics.
- 13. Good in-house repairability.
- 14. Good parts availability.
- 15. Training is offered.
- Remote diagnostic capability for some malfunctions.
- 17. Low required preventive maintenance.
- 18. Rack or bench mountable.
- Wide ambient temperature operating range:
 10° 40° C.
- 20. Moderately low signal noise: 4 ppb.
- 21. Moderately low detectable limit: 4 ppb.
- 22. Moderately low total interference equivalent: 15 ppb.
- 23. Low signal lag time: 5 seconds.
- 24. High relative humidity range: 0 95%.
- 25. Interchangeability of components with Meloy SA 285.

The Meloy NA 530R has the following unfavorable points:

- 1. Zero drift relatively large: 7 ppb.
- 2. Span drift relatively large: 13 ppb.

Large rise and fall time on low range:
 6 minutes.

THERMO ELECTRON MODEL 14B/E

The Thermo Electron Model 14B/E performed satisfactorily. It had the following favorable characteristics:

1. Excellent sample air flow.

- 2. Excellent zero and span adjustability.
- 3. No need for support gases or reagents.
- 4. Remote zero and span control availability.
- 5. Excellent operating characteristics.
- 6. Excellent linearity of ranges.
- 7. Excellent zero and span reproduceability.
- 8. Insensitive to vibration.
- 9. Insensitive to electrical noise.
- 10. Good component accessibility.
- 11. Good built-in diagnostics.
- 12. Good in-house repairability.
- 13. Good parts availability.
- 14. Training is offered.
- Remote diagnostic capability for some malfunctions.
- 16. Low required preventive maintenance.
- 17. Fast switching of NO and NO_X signals: 3 times/minute.

18. Temperature regulated PM tube.

19. Rack or bench mountable.

Wide ambient temperature operating range:
 0° - 40° C.

21. Low signal noise: 1 ppb.

- 22. Low detectable limit: 2 ppb.
- Low interference equivalent: 0.5 ppb stated.

24. Low zero drift: 1 ppb.

- 25. Low span drift: 1%
- Moderately low rise/fall times: 2 and
 2.5 minutes respectively.
- 27. Moderately low signal lag time: 30 seconds.

The Thermo Electron Model 14B/E had the following unfavorable points:

 Lack of thermally controlled reaction chamber.

2. Cabinet lacked compactness.

BECKMAN 952A

The Beckman 952A NO₂ analyzer did not perform satisfactorily. The instrument would not span or zero. It was not evaluated extensively for this reason.

Three other NO₂ analyzers are commercially available. They are the Monitor Labs Model 8440E, the Thermo Electron Model 14D/E,

and the Bendix Model 8101-B. None of these three instruments were available for evaluation.

Given the need for extensive, accurate monitoring of ambient air NO_2 concentrations, a continuously operating instrument is the best choice of analytical methods. In Harris County NO_2 concentrations as low as 20 ppb will have to be detected. On the basis of the instrument evaluation conducted as a part of this project, at least four instruments are available which would be satisfactory for NO_2 analysis. Those four instruments are the CSI Model 1600, the Bendix Model 8101-C, the Meloy Model NA 530R, and the Thermo Electron Model 14B/E.

INSTRUMENT CALIBRATION

EPA requirements for ambient air monitoring networks address instrument calibration as well as analytical method. As a result, an evaluation of instrument calibration methodology was also undertaken as a part of this project.

EPA requirements for analyzer calibration may be summarized as follows:

- 1. A zero-span check must be performed once per week.
- A two point precision check must be performed once every two weeks.
- A multipoint precision check must be performed at least once each calendar quarter.

The required instrument calibration could be accomplished in one of two ways. Either a multipoint calibrator could be maintained at each site where a continuous SO₂ or NO₂ analyzer is operated, or a single point calibrator could be maintained at each analyzer site with several multipoint calibrators kept at a central location. The multipoint calibrators would then be transported to the analyzers as required.

Given either approach, the specifications of an acceptable single point calibrator should include:

1. At least two ranges: 0 - 100 ppb and 0 - 500 ppb.

2. Stable, precise calibration gases.

3. Minimum maintenance requirements.

The specifications of an acceptable multipoint calibrator should include:

1. At least two ranges: 0 - 100 ppb and 0 - 500 ppb.

2. Stable, precise calibration gases.

3. Minimum maintenance requirements.

4. Short warm-up time.

Permeation tube (PT) type calibrators and gas phase titration (GPT) type calibrators were both considered for use with SO₂ monitoring instruments. A PT type calibrator is more useful with SO₂ than a GPT type. The PT type calibrator is simple to operate and does not require calibration gases. GPT type calibrators can present problems because of the relatively high density of SO₂ and its proclivity to stratify in gas cylinders.

PT type calibrators are available in both single point and multipoint models. They are commercially available from a number

of sources. Three commercial models were investigated for possible use with SO₂ analyzers. The calibrators considered were the Metronics Model 230, the TECO Model 143, and the Meloy Labs Model CS-10-2.

Both the Metronics Model 230 and the TECO Model 143 performed satisfactorily. The precision of both models was good over the entire range of operation. The Metronics calibrator had the shorter warm-up time.

The Meloy Labs Model CS-10-2 did not perform well. It required a twenty-four hour warm-up period. It did not yield consistent calibration gases.

With respect to use with NO₂ continuous analyzers, three types of calibrators were considered. The three alternatives were PT type, GPT type, and dilution of bottled gas type calibration.

Due to time constraints, this study did not include an actual field evaluation of NO_2 calibrators. Instead, the experience of others (Dow Chemical, Mobay Chemical, SUMX Corp., Radian Corp. and TACB) was relied upon as a guide. The method often chosen by government agencies for multipoint NO_2 calibration is GPT. These type calibrators tend to yield stable, precise calibration gases. Warm-up times are reasonable. NO_2 PT type calibrators, on the other hand, tend to be very temperature sensitive. They are also reported to have a relatively short life.

The results of this work indicate that SO_2 continuous analyzers can best be served by PT type calibrators. Continuous NO_2

analyzers can best be served by GPT type calibrators. Both requirements can be met with devices easily obtained on the commercial market.

TOTAL SUSPENDED PARTICULATES

No hi-vol air samplers were evaluated. There is little to choose from among the several manufacturers as most equipment is generally satisfactory. Calibration kits are available from hivol suppliers.

METEOROLOGICAL EQUIPMENT

With respect to meteorological equipment, it is recommended that wind speed, wind direction, temperature, relative humidity, and rainfall, be measured at each site. Equipment to measure these parameters is readily available. None was evaluated as a part of this study.

PROPOSED AMBIENT AIR MONITORING NETWORK

The existing ambient air sampling network in Harris County can be substantially improved. As noted previously, two government agencies currently operate the existing monitoring sites. Different equipment using different analytical methods is sometimes employed to detect the same air pollutants. Available data is a mixture of continuous and non-continuous values. Both wet chemical and continuous instrumental methods are in use. The existing sampling sites tend to be bunched along either side of the Houston Ship Channel or within the city limits of Houston. Many heavily populated areas of the County are devoid of air quality monitoring sites. Finally, under the present system, the lag time between the day that air quality is actually measured and the day that analytical results are available to those outside the Texas Air Control Board may approach months.

It is almost impossible to predict impending changes in energy use patterns among industrial users in and around Harris County. Clearly, however, if natural gas usage is curtailed in favor of alternate fossil fuels, air quality will probably deteriorate. The potential for substantial air quality deterioration exists because of permitted fuel conversion (6) (7).

It is proposed that the existing ambient air monitoring network in Harris County be substantially upgraded. Needed improvements would be designed to increase the number of sampling sites; modernize and standardize the monitoring equipment; and streamline the data handling, storage and retrieval systems.

The primary improvement in the ambient air monitoring network would involve the addition of ten new fixed sites and two new mobile sites. The twelve new sites would be combined with between five and fifteen existing sites to form a countywide network. The fixed sites would serve to monitor ambient air quality on a coordinated continuous basis. The two mobile monitors would supplement the fixed network by providing the capability to verify abnormal data near a particular fixed site; by collecting

supplementary data at "hotspots;" and by allowing the monitoring of particular events like the start-up of a new coal fired electric power generating facility.

Figure VII is a map which illustrates the proposed ambient air monitoring network. Approximate locations of the new sites are shown. The location of all existing monitoring sites in Harris County are also indicated.

It would be desirable for the proposed network to operate under the authority of a single government entity. The operating agency will provide the ambient air data generated to all interested parties on a timely basis. Since it is unlikely that all monitoring sites will be owned and operated by a single government agency, a plan to coordinate activities would be absolutely necessary for maximum effectiveness.

SAMPLING EQUIPMENT

INTRODUCTION

In the preceding section of this report, a recommendation was made for the development of a countywide sampling network. That recommendation would require the development of certain fixed sampling sites supported by mobile monitors. The purpose of the following discussion is to detail the hardware that would be used; to explain probable personnel requirements associated with the sampling network; and to discuss the economic requirements of the system.

FIXED SAMPLING SITES

Ten new fixed sampling sites would be required in the recommended monitoring network. A fixed site would consist of a trailer and the instrumentation needed to analyze ambient air and to transmit analytical results to a central data bank.

The trailer would be located, where possible, on secure public property such as school yards, fire station grounds, police station parking lots, etc. In some cases it might be necessary to lease privately owned land in order to locate a sampling trailer in an appropriate part of the County.

The hardware associated with a fixed site would consist of the following items:

 A secure shelter (at least 10' x 16') with air conditioning and heating.

- An Ace Glass sampling manifold with at least 8 ports.
- 3. A continuous SO₂ analyzer.
- 4. A continuous NO₂ NO NO_x analyzer.
- 5. Four hi-vol particulate samplers.
- 6. A multipoint calibrator for NO₂ and SO₂.
- 7. A data logging system.
- A cassette tape or floppy disc data storage system.
- 9. A keyboard printer.
- 10. A 10 meter meterological tower.
- 11. Appropriate meterological instruments.
- 12. Strip chart recorders for all analyzer outputs.
- 13. An equipment rack for mounting instruments.
- 14. All required plumbing.
- 15. A lightning arrester.
- Storage space for required support and calibration gases.

17. A telephone line.

The estimated personnel requirements for the proposed ten additional sampling sites are three field operators, one instrument technician, and one supervisor. The field operators would be needed to collect keyboard printer sheets and floppy discs from each site, to monitor equipment operation, and to perform routine maintenance on and around the sampling equipment. The

field operators would also be needed to perform simple instrument calibrations. The instrument technician would be needed for non-routine analyzer maintenance and repair, to do unusual or difficult calibrations, and to stock and maintain a small instrument repair shop. The supervisor would be responsible for the day to day activities of the field operators and the instrument technician and would also be required to assemble and disseminate periodic reports summarizing ambient air quality at various points in the County. Proper operation of the data handling and storage system would also fall within the responsibility of the supervisor.

MOBILE MONITORS

Two mobile monitors would be used in the recommended network. The primary function of these monitors would be to provide data that could not be obtained with fixed sites. In essence, these mobile facilities would be able to go anywhere in the County that ambient air problems develop.

A mobile monitor would have the same hardware as a fixed sampling site. In addition, a mobile monitor would be housed in a trailer that could be easily transported from place to place. All analyzers and other delicate instruments associated with a mobile monitor would be specially shock mounted. A power generator to allow operation in remote areas would also be provided.

The estimated personnel requirements for the mobile monitors would be two field operators. Their responsibilities would include

operating, maintaining and relocating the mobile monitors as required. They would also collect data and perform routine instrument calibrations. Instrument repair at the mobile monitors would be done by the same instrument technician hired to service fixed site instruments. The two field operators would be responsible to the fixed site supervisor.

ECONOMIC CONSIDERATIONS

There are several options available with respect to implementation of the proposed sampling network. The government agency that administers the program could elect to merely receive data generated by a network owned and operated by a private entity (Option I). A second alternative would involve the agency maintaining ownership of all equipment but contracting with a private entity to operate the equipment and generate the required data (Option II). A third alternative would involve the agency owning and operating all sampling equipment (Option III).*

A preliminary estimate of the capital and operating costs associated with each of the above mentioned options has been prepared. It is based upon a network of ten fixed sampling sites, plus two mobile trailers. All indicated costs are believed to be accurate to within $\pm 20\%$.

^{*}There are a number of private businesses that are experienced in developing and maintaining ambient air monitoring systems. Beckman Instruments, Radian Corporation, and SUMX Corporation all have experience in projects similar to the undertaking described in these pages.

Table XI contains a detailed estimate of the capital and first year operating costs associated with the ambient air network, if owned and operated by a government entity. The indicated capital cost is \$690,000. The purchase of analytical instruments would account for more than one-half of this amount. Operating costs during the first year of the project would total \$320,000. Operating costs are expected to escalate to \$350,000 and \$390,000 during the second and third years of the project respectively.

TABLE XI

FIRST YEAR CAPITAL AND OPERATING COSTS FOR A TEN FIXED SITE AMBIENT AIR SAMPLING NETWORK

(Option III)

Estimated Capital Cost

Analyzers, calibrators, samplers	\$350,000
Data loggers	150,000
Trailers	100,000
Integration of equipment, utilities, etc.	90,000

Estimated Annual Operating Cost

Personnel	\$135,000
Maintenance	100,000
Telephone, supplies, electr	ical 85,000

Table XII is an illustration of the estimated total costs involved with operating a ten site network under the three different options defined above. Total costs for the first year and first three years of operation are indicated. It should be emphasized that these costs include data handling and storage charges.

Table XIII is a tabulation of the capital and operating costs associated with purchasing the equipment needed to fabricate two mobile monitors. It is estimated that these monitors can be obtained for approximately \$75,000 each.

Annual operating costs for the two mobile monitors are estimated to be \$125,000 during the first year; \$138,000 during the second year; and \$151,000 during the third year. The three year cost associated with the two mobile monitors would therefore total \$564,000. It is assumed that these monitors would be owned and operated by the government agency.

The total three year monetary requirement for the ten fixed site, two mobile monitor ambient air monitoring system is as follows:

> Option I: \$3,200,000 Option II: \$3,100,000 Option III: \$2,300,000

The alternative wherein the government agency owns and operates the entire proposed network appears to be the most cost effective.

TABLE XII

CAPITAL AND OPERATING COSTS FOR A TEN FIXED SITE AMBIENT AIR MONITORING NETWORK

Option*	Monitoring Network Owned By	Monitoring Network Operated By	Capital And Operating Costs For First Year	Capital And Operating Costs For First Three Years
I	Private Entity	Private Entity	000,000\$	\$2,640,000
II	Government Agency	Private Entity	1,260,000	2,580,000
III	Government Agency	Government Agency	1,010,000	1,750,000

*All options include the cost for a private entity to:

- (1) Integrate the equipment into a viable monitoring system.
- (2) Check out the system.
- (3) Ship the facilities to the government agency.
- (4) Train government agency personnel to operate the equipment. (If the private entity is not being retained to operate).

TABLE XIII

CAPITAL AND OPERATING COSTS FOR TWO MOBILE MONITORS

Estimated Capital Cost

Analyzers, calibrators, samplers	\$60,000
Data loggers	24,000
Trailers	30,000
Power generators	10,000
Integration of equipment, utilities, etc.	26,000

Estimated Annual Operating Cost

Personnel	\$80,000
Maintenance	25,000
Telephone, supplies, electrical	20,000

٠

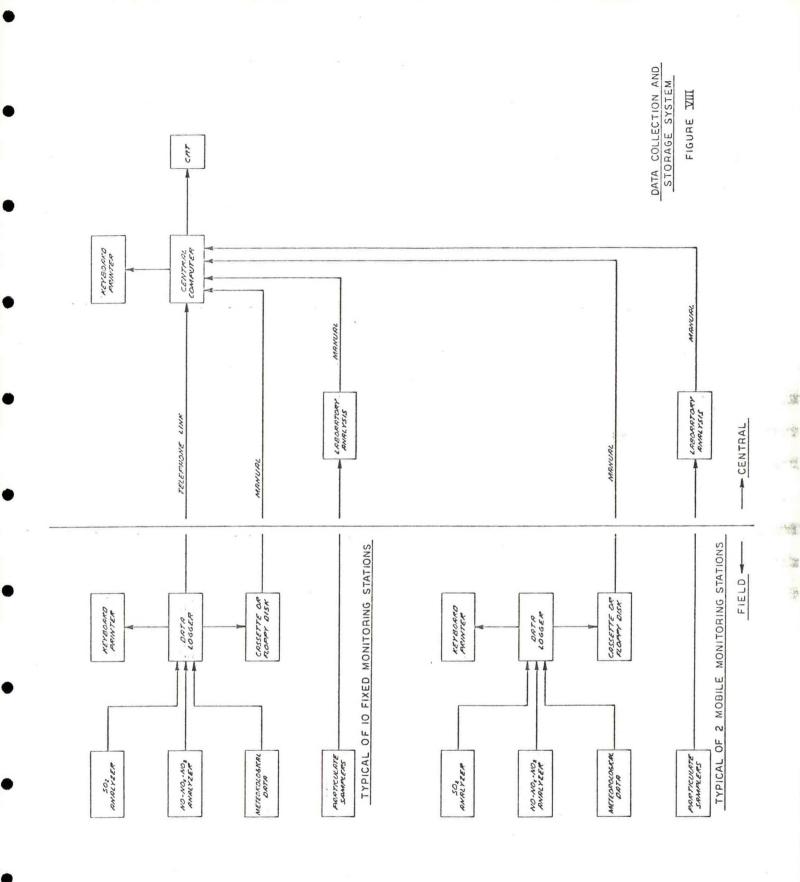
DATA COLLECTION AND HANDLING

INTRODUCTION

An ambient air monitoring network composed of ten fixed sites and two mobile monitors will require an automated data handling system. Over the course of a year, millions of bits of data will be generated. A carefully designed system will have to be provided to collect, store, and utilize this information.

The purpose of this section of the report is threefold. First, the key elements of an appropriate data handling system will be defined. Next, the results of a preliminary review of some commercially available data handling systems will be summarized. Finally, the cost of acquiring an acceptable system will be estimated.

ELEMENTS OF A DATA HANDLING SYSTEM


An effective data handling and storage system should have two primary components. The first component is a data logger. A single data logger would be required at each sampling site in the network. Its key function would be to receive an analog signal from each continuous analyzer and from appropriate meteorological equipment and convert that signal to a form suitable for temporary storage and eventual transfer to the central data storage site. The data logger can store information in the same form that it is received and it can reduce information by integration and averaging. One hour, three hour, daily, and weekly averages are available. The data logger should be designed to

output information in a variety of forms. Data can be converted to printed words or numbers through the use of a keyboard printer. The electrical outputs can be converted to magnetic signals and stored on cassette tapes or floppy discs or, the output can take the form of an electrical signal for transmission over telephone lines to a central computer.

A small central computer represents the other primary component in an effective data handling and storage system. The computer would be used to collect incoming data from all sampling sites in the monitoring system. Voice grade telephone lines would provide the primary communication link between central computer and field data loggers. The computer should also accept data in the form of cassette tapes or floppy discs. The computer should have the capability of "calling up" each sampling site and ascertaining the operational status of each monitoring instrument. The computer might also be programmed to initiate automatic calibration procedures at the field sampling sites.

A keyboard printer and a cathode ray tube (CRT) should be provided to supplement the central computer. These auxiliaries would allow system operators to monitor network operations and to extract ambient air data in either printed or display form.

Figure VIII is a schematic of a typical data handling and storage system. It illustrates the relationship between the various components in the system. Note that all TSP data must be hand carried from field to laboratory to central computer.

COMMERCIALLY AVAILABLE DATA HANDLING SYSTEMS

Data handling and storage systems commercially available from three companies were investigated. The purpose of these investigations was to conduct a preliminary review of systems capabilities and to obtain an estimate of the cost to acquire an acceptable system. An effort was not made to exhaustively review every data handling system commercially available. The systems investigated may not be the most effective technically or economically. The thrust of the review was to verify that systems capable of meeting the needs of the recommended network are in fact obtainable. The equipment considered and a brief review of its capabilities is given below.

The SUMX Corporation offers an SX-410 Data Acquisition System used in conjunction with a Data General Nova III minicomputer for data handling purposes. This system was designed specifically for ambient air monitoring applications. It would meet all the requirements of the proposed sampling network.

The Radian Corporation offers a Dart II system used in conjunction with a Unitech Products mini-computer. The Dart II system was designed specifically for ambient air monitoring applications. It would meet all the requirements of the proposed sampling network.

BIF, a unit of General Signal, offers an Accutel system which is composed of data logging equipment used in conjunction

with a mini-computer. The BIF system was developed primarily for use in monitoring remote water pumping stations and sewage treatment plants. This system appears to meet all the requirements of the proposed sampling network.

SYSTEM COSTS

It is estimated that a data handling and storage system suitable for use with the proposed ambient air sampling network could be obtained at a cost of from \$125,000 - \$150,000.

一意

in the

THE CONTINUING EVALUATION OF SO₂ AIR POLLUTION PROBLEMS

MONITOR AND EVALUATE AMBIENT AIR DATA

Information contained in preceding sections of this report illustrates several key points with respect to future SO_2 air pollution problems. The quantity of SO_2 that may legally be emitted into the atmosphere over Harris County is significantly greater in 1979 than it was in 1972. The quantity of SO_2 that is actually emitted into the atmosphere over Harris County is greater in 1979 than in 1972; however measured ambient air SO_2 concentrations do not appear to have changed appreciably in the past few years.

Given the uncertainty in the energy situation, industrial operators will be under continuing pressure to develop and utilize alternate fuels. If natural gas becomes difficult to obtain, increasing amounts of fuel oil and coal will probably be utilized. In this event the gap between the amount of SO_2 that can be emitted and the amount of SO_2 that is emitted will narrow.

Permits to construct new facilities which will emit SO₂ into the atmpshere are still being issued. The conversion of existing facilities to allow the combustion of fuel oil and coal instead of natural gas is also still being permitted. The TACB is presently in the process of adopting a regulation which will allow, on an emergency basis, the use of high sulfur content fuel oil if fuel oil with a low sulfur content is not available. Under these circumstances, the threat exists for SO₂ emissions

to increase; therefore the need to monitor atmospheric quality to observe measureable changes is real.

Atmospheric emissions of NO_2 and TSP may also increase if alternate fossil fuels replace natural gas. As Houston's population grows, these pollutants, NO_2 and TSP, will also enter the atmosphere due to factors not related to changes in stationary energy use patterns. The consequences of any increased ambient air concentrations of NO_2 and TSP will none the less be important.

Should atmospheric emissions of SO₂ increase, it will become important to carefully monitor the resultant increases in ambient air concentrations. A sampling network capable of providing comprehensive, timely ambient air data is described in other sections of this report. Deploying and operating this network would provide the basic information needed to make rational decisions regarding increased regulatory control.

MONITOR EMISSION DATA

Until the work described in this report was undertaken, little or no information was available regarding actual SO₂ emissions from industrial facilities located in and around Harris County. The TACB has not compiled an emission inventory since 1975. To obtain information concerning actual SO₂ emissions from new, modified, and expanded sources, a questionnaire was prepared and mailed to potentially major emitters. The responses clearly

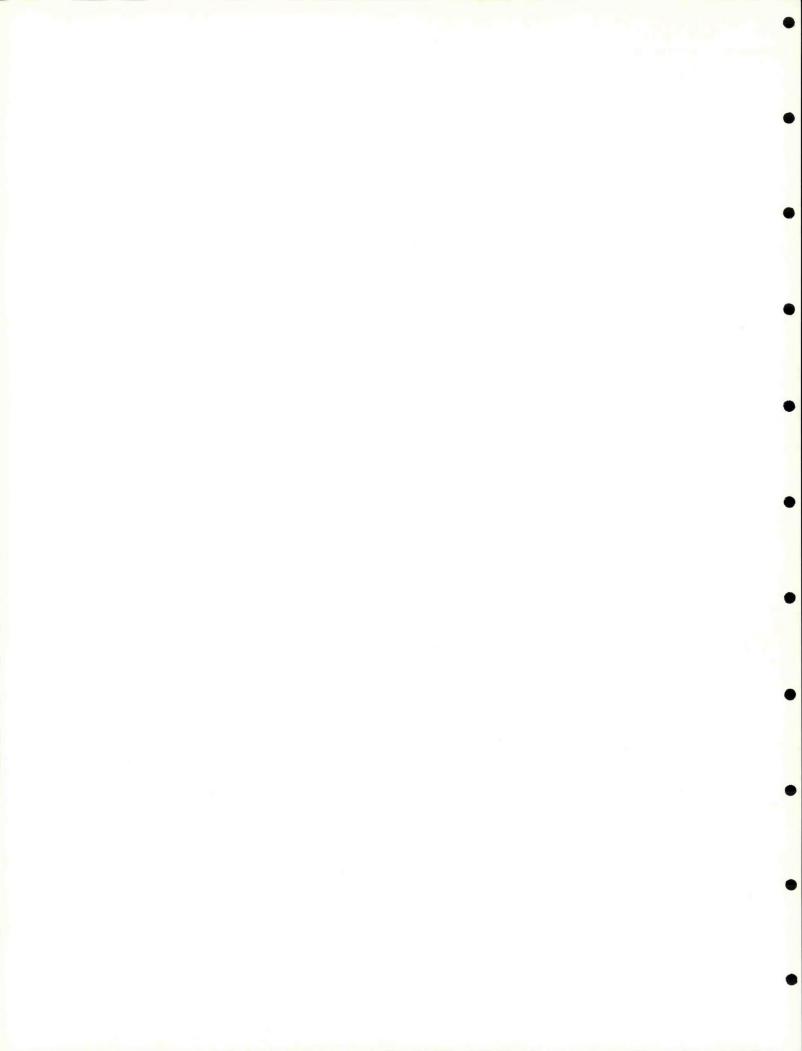
indicate that some source operators do not understand how much SO₂ they may legally emit from permitted facilities. However, the data obtained gives an insight into actual conditions, allowing a comparison to be made between emissions and ambient air quality and providing a base line by which to judge the effect of increased emissions on air quality as fuel conversion takes place.

In coming years, should SO_2 air pollution problems increase, accurate, up-to-date information related to SO_2 air emissions as well as fuel oil and coal usage will be a key factor in siting new energy consuming sources. A questionnaire similar to the one used in this study should be submitted to major industrial sources each year. If accurately completed, it will provide some very useful information. It would also be helpful if annual TACB emission inventories are compiled. In this way, it may be possible to better understand the complex relationship between actual SO_2 emissions and observed ambient air SO_2 concentrations.

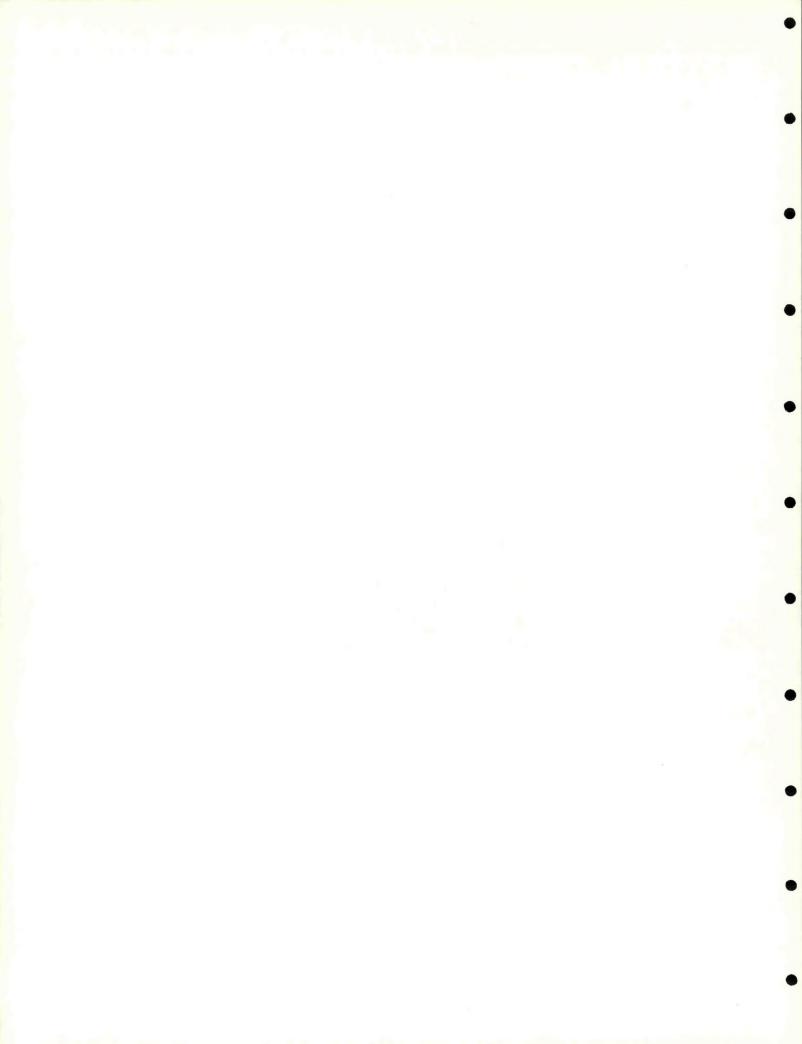
DEVELOP POSSIBLE REMEDIAL ACTIONS

If all of the SO_2 is emitted into the atmosphere that can be legally emitted, it is likely that a serious problem will develop. Two recent studies show that unhealthful ambient air concentrations of SO_2 could occur in Harris County given permitted emissions (6) (7). This situation will be further compounded if more and more SO_2 emissions are permitted. Excessive concentrations of NO_2 and TSP are also likely.

It would therefore seem prudent to prepare for the future by developing a plan to deal with an unacceptable SO_2 air pollution problem. Virtually any plan which effectively controls the ambient air concentration of SO2 will also have a positive effect on NO2 and TSP concentrations. There are at least three different approaches that might be taken. A moratorium could be placed on the construction of new industrial sources of SO_2 emissions. If a severe SO₂ air pollution problem develops, then the construction of more SO2 emitting facilities would only tend to exacerbate the problem. Another approach would be to attempt to reduce SO2 emissions from existing sources. Control devices might be required on a greater variety of industrial point sources that emit SO2. The sulfur content of fuel oil and coal to be used for power generation might be further restricted. Or, if the air pollution problem becomes truly severe, the operation of some SO2 emitting facilities might be curtailed. The third possible approach would involve the management of clean burning fuels. If only a limited amount of low sulfur fuel is available, and if a significant SO2 air pollution problem is being experienced, then clean burning fuels might be allocated to industrial facilities located in areas of Harris County where the problem is most severe.


The use of fuels should be managed and the emissions therefrom regulated in a manner directly related to the concentration of pollutants in the ambient air, if not, we may one day find the national standards exceeded all over Harris County, Texas.

APPENDIX


TABLE OF CONTENTS

References
Master List of Sources
Actual 1978 SO ₂ Emissions From Permitted Facilities 8-11
A List Of All Construction Permits Allowing SO ₂ Emissions 8-15
Air Quality Data References 8-23
Ambient Air Data
Letter and Questionnaire

REFERENCES

- Records of the Emission Inventory Section, Texas Air Control Board, Austin, Texas.
- (2) <u>1978 Annual Data Summary for Non-continuous Monitoring</u>, Texas Air Control Board, 1978.
- (3) <u>Attainment Analysis</u>, <u>Volume I</u>, <u>Causes of Nonattainment</u>, Texas Air Control Board, January, 1977.
- (4) "Procedures for Testing Performance Characteristics of Automated Methods," 40 CFR Part 53, Subpart B, pp. 953-976.
- (5) "Determination of Sulfur Dioxide Emissions from Stationary Sources by Continuous Monitors," 40 <u>CFR</u> Part 52, Appendix D, pp. 935-941.
- (6) Evaluation of the Impact of the Federal Prevention of Significant Deterioration Regulations for Sulfur Dioxide in Houston, Texas, ERT, Inc., April, 1979.
- (7) Final Report on the SO₂ Air Quality for Harris, Ft. Bend, and Chambers Counties, Radian Corporation, May 4, 1979.

MASTER LIST OF SOURCES

HARRIS COUNTY SO2 PROJECT

Facility Number	Facility Name
1	Texas Industries
2	H. L. & P Parish
3	Cameron Iron
4	Shell Development
5	H. L. & P Wharton
6	United Salt
7	Columbian Carbon
8	Witco Chemical
9	Maxwell House
10	General Portland
11	Eddy Refining
12	Gulf Coast Portland Cement
13	Stauffer - Houston
14	Lone Star Cement
15	Anheuser Busch
16	Petro-Tex
17	Charter International Oil
18	H. L. & P Greens Bayou
19	Ideal Cement
20	Monsanto - Chocolate Bayou
21	ARCO Refinery

Facility Number	Facility Name	
22	GATX - Galena Park	
23	Champion Paper	
24	Amoco – Chocolate Bayou	
25	Amerada Hess	
26	Crown Central Petroleum	
27	Koppers	
28	Pennwalt	
29	Air Products - Pasadena	
30	Diamond Shamrock - Greens Bayou	
31	Ethyl	
32	Georgia Pacific	
33	Tenneco	
34	Berwind Railway	
35	Shell	
36	Air Products - Channelview	
37	Houston Fuel Oil	
38	Lubrizol - Deer Park	
39	Union Carbide - Deer Park	
40	Diamond Shamrock - Deer Park	
41	ARCO - Channelview	
42	Oxirane - Channelview	
43	Southland Paper	
44	Rohm & Haas	
45	Rollins	

Master List of Sources - continued

Facility Number	Facility Name
46	Paktank – Deer Park
47	Diamond Shamrock - Independence
48	ARCO - Deer Park
49	Upjohn
50	Rexene
51	I.C.I United States
52	Diamond Shamrock - Battleground
53	U.S.I.
54	Quaker Oats
55	Celanese - Bayport
56	H. L. & P Bertron
57	Syngas
58	Air Products - La Porte
59	Big Three
60	DuPont
61	Exxon Chemical - Baytown
62	Exxon Refinery
63	American Hoechst
64	GAF
65	Union Carbide - Texas City
66	Gulf Chem. & Met.
67	H. L. & P Robinson
68	Amoco - Texas City
69	Gulf Oil Chemicals

Faci	lity Number	Facility Name
	70	J. M. Huber
	71	H. L. & P Cedar Bayou
	72	Marathon Oil
	73	Texas City Refining
	74	Exxon Chemical - Mont Belvieu
	75	Cities Service
	76	Mobay
	77	Monsanto - Texas City
	78	Duval Corp.

Master List of Sources - continued

ACTUAL 1978 SO_2 EMISSIONS FROM PERMITTED FACILITIES

Facility Number	SO2 Emissions From Facilities Permitted Before 7/26/75 (Tons)	Facilities Permitted
1	1,520	0
2	0	4,150
3	?	?
4	0	0
5	10	0
6	0	0
7	0	0
8	5	0
9	214	0
10	0	0
11	0	11
12	0	451
13	0	0
14	38	0
15	0	209
16	88	0
17	5,070	1,650
18	0	0
19	0	78
20	?	?
21	1,300	0

(Questionnaire Values)

8-11

Facility Number	SO ₂ Emissions From Facilities Permitted Before 7/26/75 (Tons)	SO ₂ Emissions From Facilities Permitted After 7/26/75 (Tons)
22	?	?
23	475	0
24	?	?
25	0	0
26	0	0
27	0	12
28	0	0
29	0	0
30	0	0
31	348	0
32	?	?
33	0	0
34	?	?
35	1,860	142
36	?	?
37	0	0
38	0	258
39	?	?
40	0	59
41	6,210	0
42	0	3,510
43	612	0

Actual 1978 SO2 Emissions - continued

	After 7/26/75 (Tons
673	0
?	?
?	?
0	0
0	20
?	?
291	103
0	148
0	0
0	0
201	0
845	0
140	0
?	?
17	1
0	1
285	55
0	3,170
137	0
?	?
0	0
?	?
	? 0 291 0 201 845 140 ? 17 0 285 0 137 ? 0

Actual 1978 SO_2 Emissions - continued

-		
Facility Number	SO2 Emissions From Facilities Permitted Before 7/26/75 (Tons)	SO ₂ Emissions From Facilities Permitted After 7/26/75 (Tons)
66	?	?
67	868	0
68	?	?
69	990	0
70	1,980	0
71	0	65
72	?	?
73	?	?
74	0	0
75	0	27
76	0	723
77	0	0
78	0	0

Actual 1978 SO₂ Emissions - continued

NOTE: Facilities which did not respond to the questionnaire are indicated by a question mark (?).

A LIST OF ALL CONSTRUCTION PERMITS ALLOWING SO_2 EMISSIONS:

3/5/72 TO 6/30/79

Facility	Construction	Permit	Permitted SO2
	Permit	Issue	Emission Rate
	Number	Date	(Tons/Year)
Air Products - Channelview	7033	3/30/79	298
Air Products - La Porte	771A	7/2/75	70
Air Products - La Porte	771B	3/9/77	311
Air Products - La Porte	3402	7/2/75	486
Air Products - La Porte	3403	7/2/75	657
Air Products - La Porte	4803	3/9/77	55
Air Products - La Porte	2022	4/1/74	13
Air Products - Pasadena	912	5/31/73	372
Air Products - Pasadena	1778	2/7/74	324
Air Products - Pasadena	1499	11/27/73	26
Air Products - Pasadena	184	5/23/72	5
Amerada Hess	652 6	4/25/79	162
American Hoechst American Hoechst American Hoechst American Hoechst American Hoechst American Hoechst	5252 5252A 5252B 5252C 5252D 5252E	7/1/77 7/1/77 7/1/77 7/1/77 7/1/77 7/1/77 7/1/77	12 1,010 1,010 1,010 254 675
Amoco - Chocolate Bayou	101	10/2/72	119
Amoco - Chocolate Bayou	102	10/2/72	119
Amoco - Chocolate Bayou	217	10/2/72	119
Amoco - Chocolate Bayou	2798	11/29/74	72
Amoco - Chocolate Bayou	2798A	11/29/74	72
Amoco - Chocolate Bayou	4483	9/15/76	14
Amoco - Texas City Amoco - Texas City (continued)	2103 2315 2384A 2542 2610A 2611 2612 2636 2939 3170	6/5/74 8/23/74 10/3/74 11/4/74 10/1/74 10/1/74 10/1/74 4/9/75 4/15/75	123 9 889 2,330 62 32 11 2,230 13

Facility	onstruction	Permit	Permitted SO ₂
	Permit	Issue	Emission Rate
	Number	Date	(Tons/Year)
Amoco - Texas City (continued) Amoco - Texas City Amoco - Texas City Amoco - Texas City Amoco - Texas City	3362 3363 3364 4903	10/3/75 10/3/75 10/3/75 4/13/77	2,270 2,430 2,960 123
Anheuser Busch	5351	7/5/77	867
Anheuser Busch	7079	3/16/79	298
ARCO - Channelview	2933	2/3/75	7,900
ARCO - Channelview	6386	6/22/79	385
ARCO - Channelview	1768	<mark>5/6/7</mark> 4	8,480
ARCO – Deer Park	2558	8/5/74	254
ARCO – Deer Park	3908	3/5/76	837
ARCO Refinery ARCO Refinery ARCO Refinery ARCO Refinery ARCO Refinery ARCO Refinery ARCO Refinery ARCO Refinery ARCO Refinery	446 1500 2149 2151 2152 2153 2166 2167 6065	12/27/72 10/26/73 8/7/74 8/7/74 8/7/74 8/7/74 8/7/74 8/7/74 8/7/74 5/15/78	1 350 1,870 315 101 3,540 241 131 5
Berwind Railway	5609	10/25/77	3,640
Big Three Big Three Big Three Big Three Big Three	2627A 4957 4960 4961 4964	7/14/78 4/5/77 4/5/77 4/5/77 4/5/77 4/5/77	613 2,540 845 3,780 2,280
Cameron Iron	4813	2/3/77	561
Celanese - Bayport	261	9/12/72	48
Celanese - Bayport	264	9/12/72	876
Champion Paper	70	5/3/72	1,150
Champion Paper	6002	2/28/78	1,040
Champion Paper	6003	2/28/78	1,240
Charter International Oil	2498	11/14/74	<mark>44</mark>
Charter International Oil (continued)	2501	10/9/74	7,030

Co	nstruction	Permit	Permitted SO ₂
	Permit	Issue	Emission Rate
	Number	Date	(Tons/ <mark>Yea</mark> r)
Charter International Oil (continued)	250 7	12/2/75	2,250
Charter International Oil	2508	12/2/75	1,730
Cities Service	3956 A	11/1/78	110
Columbian Carbon	3601	10/3/75	153
Crown Central Petroleum Crown Central Petroleum Crown Central Petroleum	2871 5953 605 9	1/3/75 2/27/78	1,180 53 14
Diamond Shamrock - Battleground	1911A	9/12/74	1,030
Diamond Shamrock - Battleground	1911B	9/12/74	1,030
Diamond Shamrock - Battleground	1911C	1/6/75	1,030
Diamond Shamrock - Deer Park	1522	11/10/76	1,360
Diamond Shamrock - Deer Park	4528A	9/27/77	753
Diamond Shamrock - Deer Park	5128A	2/28/78	950
Diamond Shamrock - Deer Park	5240	9/27/77	1,680
Diamond Shamrock - Greens Bayou	2299	5/22/74	350
Diamond Shamrock - Greens Bayou	4893	4/12/77	244
Diamond Shamrock - Independence	3855	11/2/76	2,220
DuPont DuPont DuPont DuPont DuPont DuPont DuPont DuPont	1529 1834A 2621A 3078 4019 5034 5034A 1834 663	8/21/73 6/20/75 5/11/76 4/9/75 5/11/76 3/30/77 4/13/79 1/29/74 8/21/73	228 156 1,070 88 2,160 22 35 125 9
Duval Corp.	3735	12/1/75	420
Eddy Refining	3697	10/3/75	136
Eddy Refining	4709	11/22/76	29
Eddy Refining	5211	6/7/77	29
Ethyl	734	7/19/73	2,390
Ethyl	1188	7/19/73	477
Ethyl	1820	2/19/74	1,810
Ethyl	3962	4/1/76	98
Ethyl	4551	10/8/76	66

Facility	Construction Permit Number	Permit Issue Date	Permitted SO ₂ Emission Rate (Tons/Year)
Exxon Chemical - Baytown Exxon Chemical - Baytown	3162 3452 3871 4600 5019 5121 5259 5555	4/15/75 12/29/75 1/27/76 9/30/76 4/19/77 4/19/77 6/29/77 11/28/77	13 14 5,620 53 1,180 368 850 850
Exxon Chemical - Mont Belvieu	4831	2/24/78	380
Exxon Refinery Exxon Refinery	243 244 527 1632 2007 2070 2071 2072 2185 2210 2258 2338 2389 2665 2932 4973 5330	7/5/72 7/5/72 3/1/73 12/12/73 5/22/74 5/22/74 5/22/74 5/22/74 5/22/74 5/22/74 4/12/74 5/22/74 4/12/74 5/13/74 5/22/74 10/9/74 2/10/75 3/28/77 6/16/77	241 241 710 392 3,980 175 188 394 4,670 6,930 407 1,070 696 1,940 670 390 385
GAF	6918	4/13/79	946
GATX - Galena Park GATX - Galena Park	2443 2444	7/25/74 7/25/74	19 <mark>6</mark> 196
General Portland	2658	11/7/74	2,280
Georgia Pacific	4825	1/18/77	368
Gulf Chem. & Met.	5094	2/28/78	447
Gulf Coast Portland Cement	5 <mark>1</mark> 00	4/27/77	2,7 <mark>2</mark> 0
Gulf Oil Chemicals Gulf Oil Chemicals Gulf Oil Chemicals	1504 2138 2139	4/1/74 4/1/74 4/1/74	2,280 5,530 4,380

			(Tons/Year)
Houston Fuel Oil	5783	2/28/78	201
H. L. & P Bertron H. L. & P Bertron	1751 1752 1753 1754 4484 4485	12/28/73 12/28/73 12/18/73 12/28/73 8/4/76 8/4/76	3,060 3,060 4,100 4,100 24 24
H. L. & P Cedar Bayou	1532	8/26/76	46,700
H. L. & P Greens Bayou	2894	7/24/75	10,200
H. L. & P Parish H. L. & P Parish H. L. & P Parish	2348A 2349A 5530	6/17/76 6/17/76 9/19/77	33,800 33,800 30,100
H. L. & P Robinson	2306	6/27/74	23,300
H. L. & P Wharton H. L. & P Wharton	445 2094	12/7/72 3/29/74	3,050 11,200
I.C.I United States I.C.I United States I.C.I United States	3619 4717 4919	9/5/75 1/27/77 2/3/77	118 1 11
Ideal Cement	5321A	8/9/77	2,860
J. M. Huber	2596	10/9/74	2,570
Koppers Koppers Koppers	5359 6467 7443	8/17/77 12/19/78 6/11/79	28 84 5
Lone Star Cement	1765	1/15/74	2,330
Lubrizol - Deer Park Lubrizol - Deer Park	3319 4688	7/3/75 2/10/77	512 657
Marathon Oil Marathon Oil Marathon Oil Marathon Oil	616 988 2084 6756	6/13/73 7/9/73 4/19/74 3/28/79	39 127 464 269

8-19

Facility	Construction	Permit	Permitted SO ₂
	Permit	Issue	Emission Rate
	Number	Date	(Tons/Year)
Maxwell House	1286	8/17/73	456
Maxwell House	5341	9/2/77	451
Maxwell House	5500	9/2/77	872
Mobay	5030	4/5/77	2,730
Mobay	6177	2/28/78	1,160
Monsanto - Chocolate Bayou	4634	1/26/77	6,560
Monsanto - Chocolate Bayou	5084	4/29/77	31
Monsanto - Chocolate Bayou	5336	9/22/77	5,260
Monsanto - Chocolate Bayou	5336A	9/22/77	2,100
Monsanto - Chocolate Bayou	2271	6/27/74	39
Monsanto - Texas City	1272	1/2/74	845
Monsanto - Texas City	5260	9/2/77	6,640
Oxirane - Channelview	3286A	8/25/75	2,510
Oxirane - Channelview	3286B	8/25/75	2,510
Oxirane - Channelview	3286C	8/25/75	2,510
Paktank - Deer Park	4872	1/27/77	106
Paktank - Deer Park	5313	9/23/77	160
Pennwalt	3917	8/26/76	1,920
Petro-Tex	1341	11/19/73	548
Quaker Oats	3008	2/27/75	1,270
Rexene	3126	4/29/75	368
Rexene	4157	7/28/76	346
Rohm & Haas	751	4/5/73	574
Rohm & Haas	818	6/20/73	9
Rohm & Haas	1257	9/10/73	280
Rohm & Haas	1257A	7/16/75	329
Rohm & Haas	1717	1/17/74	425
Rohm & Haas	1909	1/17/74	442
Rohm & Haas	1910	1/11/74	889
Rohm & Haas	2165	4/1/74	2,020
Rohm & Haas	4276	7/23/76	16
Rollins	679	4/18/73	876

Facility	Construction	Permit	Permitted SO2
	Permit	Issue	Emission Rate
	Number	Date	(Tons/Year)
Shell Shell	920 1235 1830 1831 1832 1833 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1920 3179 3199 3200 3201 3202 3213 3214 3215 3216 3219 3333	6/26/73 11/19/73 4/3/74 4/3/74 4/3/74 3/12/75 5/29/75 5/29/75 5/29/75 5/29/75 5/29/75 5/29/75 5/29/75	$\begin{array}{c} 9,750\\ 999\\ 127\\ 96\\ 206\\ 110\\ 438\\ 438\\ 1,840\\ 1,840\\ 263\\ 346\\ 232\\ 902\\ 942\\ 1,500\\ 272\\ 245\\ 85\\ 3,600\\ 3,570\\ 3,570\\ 3,570\\ 14,600\\ 198\\ 1,690\\ 9\\ 134\\ 206\\ 53\end{array}$
Shell	4596	2/25/77	13
Shell	6713	10/5/78	79
Shell Development	1190	8/14/73	136
Shell Development	1191	8/14/73	136
Southland Paper	190	5/26/72	1,560
Southland Paper	1629	11/2/73	105
Stauffer - Houston	4802	7/27/77	5,100
Syngas	4773	2/18/77	854
Tenneco	2964	7/10/75	1,980
Tenneco	4545	10/14/76	898

Facility	Construction Permit Number	Permit Issue Date	Permitted SO ₂ Emission Rate (Tons/Year)
Texas City Refining	1035	8/18/73	114
Texas City Refining	1122	8/17/73	298
Texas City Refining	1972	2/20/74	72
Texas City Refining	2940	9/5/75	823
Texas City Refining	4393	9/17/76	806
Texas City Refining	4499	9/17/76	52
Texas City Refining	4797	4/12/77	57
Texas Industries	4534A	1/6/77	2,090
Union Carbide - Deer Park	4861	3/15/77	40
Jnion Carbide - Deer Park	4862	3/15/77	193
Inion Carbide - Deer Park	4863	3/15/77	164
Jnion Carbide - Deer Park	4864	3/15/77	248
Jnion Carbide - Texas City	1516A	11/29/73	635
Jnion Carbide - Texas City	1516B	11/29/73	635
Jnion Carbide - Texas City	1516C	11/29/73	635
Jnion Carbide - Texas City	1516D	11/29/73	635
Jnion Carbide - Texas City	2958A	1/4/78	5,260
Union Carbide - Texas City	3052	2/27/75	20
Jnion Carbide - Texas City	2958	3/18/75	2,520
United Salt	5935	2/3/78	188
Upjohn	1483A	5/4/76	1,330
Upjohn	4221	5/4/76	530
U.S.I. Chemicals	<mark>5226</mark>	6/1/77	561
Witco Chemical	524	6/5/73	48
Witco Chemical	3874	12/16/75	66

<u>NOTE</u>: To be included in this table, a construction permit had to have been issued between 3/5/72 and 6/30/79. Additionally, the construction permit had to have been issued to a facility with total permitted SO₂ emissions of at least 100 tons per year.

AIR QUALITY DATA REFERENCES

- City of Houston, <u>1973 Annual Report Air Pollution Control Program</u>, Houston, Texas.
- City of Houston, <u>Annual Statistical Report, 1974</u>. City of Houston Health Department, Air Pollution Control Program, Houston, Texas.
- City of Houston, <u>1975 Annual Statistical Report Air Pollution Control</u> Program, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1975 First Quarter</u> Report, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1975 Second Quarter</u> Report, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1975 Third Quarter</u> Report, Houston, Texas.

Pro-

- City of Houston, <u>Air Pollution Control Program 1975 Fourth Quarter</u> <u>Report</u>, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1976 First Quarter</u> Report, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1976 Second Quarter</u> <u>Report</u>, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1976 Third Quarter</u> Report, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1976 Fourth Quarter</u> Report, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1977 First Quarter</u> Report, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1977 Second Quarter</u> <u>Report</u>, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1977 Third Quarter</u> Report, Houston, Texas.
- City of Houston, <u>Air Pollution Control Program 1977 Fourth Quarter</u> Report, Houston, Texas.

Air Quality Data References - continued

- City of Houston, <u>Bureau of Air Quality Control</u>, 1979, First Quarter <u>Report</u>, Houston, Texas.
- Texas Air Control Board, 1973 Annual Data Summary: Air Quality Control Regions 5, 7, 10, Austin, Texas.
- Texas Air Control Board, 1974 Annual Data Summary: Air Quality Control Regions 5, 7, 10, Austin, Texas.
- Texas Air Control Board, 1975 Annual Data Summary: Air Quality Control Regions 5, 7, 10, Austin, Texas.
- Texas Air Control Board, 1976 Annual Data Summary Non-Continuous Monitoring, Austin, Texas.
- Texas Air Control Board, <u>1977 Annual Data Summary for Non-Continuous</u> Monitoring, Austin, Texas.
- Texas Air Control Board, 1978 Annual Data Summary for Non-Continuous Monitoring, Austin, Texas.
- Texas Air Control Board, <u>Continuous Air Monitoring Network Data</u> Summary 1976, Austin, Texas.
- Texas Air Control Board, <u>Continuous Air Monitoring Network Data</u> Summary 1977, Austin, Texas.
- Texas Air Control Board, Continuous Air Monitoring Network Data Summary 1978, Austin, Texas.

AMBIENT AIR DATA

ANNUAL ARITHMETIC MEANS BY SITE

SO₂ µg/m³

T.A.C.B. Sampling Sites:

CYPRESS	SPRING	CAMS 8	CAMS 1	C.V.
233004	233005	233024	256034	233006
73 2	73 2	73	73	73 2
74 2	74 2	74 2	74 6	74 2
75 2	75 4	75 2	75 7	75 4
76 2	76 2	76 2	76 3	76 3
77 2	77 2	77 3	77 7	77 3
78 9	78 12	78 10	78 15	78 16
PARK	LA PORTE	COLLEGE	ALIEF	
032002	313002	406006	233003	
73 6	73 3	73 4	73 2	
74 5	74 4	74 3	74 2	
75 4	75 2	75 2	75 3	
76 3	76 3	76 2	76 2	
77 4	77 2	77 3	77 2	
78 9	78 12	78 13	78 9	
City of Houston	Sampling Sites:			
H 11	H 25	H 12	H 13	H 15
256045	256041	256048	256046	256050
73 3 74 2 75 3 76 2 77 4 78 6	73 74 75 76 2 77 3 78 4	73 3 74 NR 75 4 76 2 77 4 78 4	73 5 74 7 75 3 76 2 77 2 78 3	7397413758767778783
H 18	H 20	DP 22	H 23	DP 1
233018	233020	137002	233023	137001
73 12	73 25	73 58	73 10	73 19
74 10	74 28	74 74	74 10	74 20
75 13	75 11	75 22	75 12	75 6
76 3	76 9	76 17	76 7	76 3
77 4	77 22	77 10	77 3	77 4
78 4	78 5	78 12	78 3	78 6

SO ₂ - continued			
H 21 256028	H 17 256017	P 2 406002	H04 256042
73 12 74 3 75 6 76 4 77 6 78 8	7317742675137614778789	73 11 74 4 75 3 76 3 77 7 78 10	73 7 74 4 75 2 76 2 77 2 78 3
H 19 256019	H 14 256049	H02 256002	H06 256006
73 36 74 25 75 6 76 11 77 13 78 3	73 6 74 3 75 2 76 3 77 3 78 4	73 4 74 5 75 9 76 3 77 4 78 4	73 7 74 6 75 4 76 2 77 3 78 3
H01 256001	T 19 256037	H07 256007	H 10 256010
73 3 74 4 75 10 76 3 77 5 78 4	73 74 75 76 4 77 6 78 4	73 6 74 7 75 9 76 3 77 4 78 4	73 3 74 3 75 7 76 2 77 4 78 4

T 5 256035

4

H05

5 4

H08 256044

H 2 2560		H0 2 <mark>56</mark> 0	
73		73	5
74		74	2
75		75	5
76	3	76	2
77	3	77	2
78	3	78	3

AMBIENT AIR DATA

ANNUAL ARITHMETIC MEANS BY SITE

NO₂ µg/m³

T.A.C.I	3. Samplin	g Sites:								
CYPR 2330			SPRING CAMS 8 233005 233024			C/ 25		V. 3006		
73 74 75 76 77 78	22 28 23 25 32 35	73 74 75 76 77 78	16 33 33 31 41 38	73 74 75 76 77 78	40 46 36 47 50	73 74 75 76 77 78	51 63 37 45 53		73 74 75 76 77 78	19 21 39 34 45 43
PAI 0320		LA P(313(LEGE 5006		LIEF 3300 3			
73 74 75 76 77 78	30 32 38 28 26 22	73 74 75 76 77 78	20 24 21 22 33 37	73 74 75 76 77 78	18 24 24 27 33 46	73 74 75 76 77 78	21 30 44 20 36 40			
City o	f Houston	Sampling S	Sites:							
H 2560		H 2 2560			12 048		13 6046			15 5050
73 74 75 76 77 78	86 59 48 50 80 81	73 74 75 76 77 78	66 64 68	73 74 75 76 77 78	100 76 58 46 56 64	73 74 75 76 77 78	92 66 58 54 48 58		73 74 75 76 77 78	121 90 76 60 54 67
H 2330		H 2 233			22 002		1 23 33023			9 1 7001
73 74 75 76 77 78	93 74 52 30 49 55	73 74 75 76 77 78	92 66 45 49 52 57	73 74 75 76 77 78	112 86 68 56 57 54	73 74 75 76 77 78	86 66 50 44 29 42		73 74 75 76 77 78	107 89 81 52 50 64

 NO_2 - continued

H 21 256028	H 17 256017	P 2 406002	H04 256042	T 5 256035
7310074807558765277517853	7311474807558765577617859	7310674877574766277647864	739774737550764777457848	73 74 75 76 64 77 64 78 71
H 19 256019	H 14 256049	H02 256002	H0 6 25600 6	H05 256043
7312074927564765777717885	7310474777557764877557851	7312574927582767077757895	7311674917561764077457852	739974767559764177417835
H01 256001	T 19 256037	H07 256007	H 10 256010	H08 256044
7315974897596768277747856	73 74 75 76 96 77 87 78 91	739274737566764577517860	7311274677562764177467861	739774687567764477607858
H 24 256040	H09 25600 9			
73	73 100			

13		13	100
74		74	86
75		75	79
76	55	76	64
77	54	77	67
78	37	78	64

AMBIENT AIR DATA

ANNUAL GEOMETRIC MEANS BY SITE

TSP $\mu g/m^3$

T.A.C.B. Sampling Sites:

CYPRESS 233004	SPRING 233005	CAMS 8 233024	CAMS 1 256034	C.V. 233006
734974597562765377647861	735074467554765177577861	73 74 61 75 64 76 65 77 74 78 72	7310374717582769077917899	7362746075707674777178
BAYWAY 03200 3	PARK 032002	ROSELAND 032001	LA PORTE 313002	COLLEGE 406006
736474657571768377747865	736974827564766477717864	734174487546765277477846	735574477560765677607863	73 50 74 44 75 49 76 55 77 58 78 60
				1
ALIEF 233003				
73 48 74 51				
75 57 76 52 77 60 78 60				

City of Houston Sampling Sites:

	11	H 25	H 12	T 22	H 13
	045	256041	256048	256038	256046
73 74 75 76 77 78	57 49 57 60 62 67	73 74 75 76 46 77 66 78 61	736174557555766577757875	73 74 55 75 63 76 64 77 67 78 67	736374767575766977687868

8-29

TSP - continued				
H 15 256050	H 18 233018	H 20 233020	DP 22 137002	H 23 233023
73937478757976957710278102	73102746875657670777778101	736274577555766177687870	7361748575807610177917883	734674567555766377897862
DP 1 137001	H 21 256028	H 17 256017	P 2 406002	H0 4 256042
736674817578767377747873	737974737566766577727870	738374867590767977827876	738574837584768177787881	734974547551765777577891
T 5 256035	H 19 256019	T 25 256039	H 14 256049	H02 256002
73 74 101 75 76 110 77 142 78 157	7310574105759676927710878123	73 74 55 75 65 76 60 77 63 78 88	738874867590768677947895	7399749275104769777977895
H06 256006	H05 256043	H01 256001	T 19 256037	H07 256007
736774597566765977687867	7310374797563766677677874	738474827597766977867880	73 74 70 75 71 76 69 77 76 78 74	735974607562765377537863
H 10 256010	H08 256044	H 24 256040	H09 256009	
735674567556765777617863	734874487554765577547856	73 74 75 76 46 77 61 78 64	736874617579766877787872	

HARRIS COUNTY POLLUTION CONTROL DEPARTMENT

A. R. PEIRCE DIRECTOR

The Harris County Pollution Control Department received through the Coastal Energy Impact Program a federal grant to design a plan to prepare for the consequences of new or expanded energy facilities located in this area. Our plan specifically addresses the impact on air quality of fuels conversion.

At the present time, we are in the process of assembling air quality data to establish a data base for total suspended particulate, sulfur dioxide and nitrogen dioxide. We believe these data will be more meaningful if the quantity of sulfur bearing fuels combusted in Harris County can be determined. Permit information provides a picture of the quantity of sulfur bearing fuels allowed but does not give an indication of how much is being or has been burned. In proceeding with this planning grant, we believe it is necessary to look at the record as accurately as possible and to that end, we are asking for your assistance.

The attached questionnaire goes into some detail but the information will assist us greatly since it is extremely important to correlate the quantity of sulfur bearing fuels burned with actual air quality. We do not have a sulfur dioxide problem at present; perhaps we never will have one. If, however, future monitoring shows an increasing level of sulfur dioxide with an increasing usage of sulfur bearing fuels, we will have a realistic basis on which to predict future ambient air concentrations as the use of sulfur bearing fuels continues to increase. With such factual information control strategies can be better formulated.

Your cooperation in completing the questionnaire and returning it to us by October 15 will be greatly appreciated. If there are any questions, please call.

Very truly yours,

A. R. Peirce Director

PASADENA, TEXAS 77506

ARP/1b

Attachment

107 NORTH MUNGER

8-31

(713)221-5224

P.O. BOX 6031

HARRIS COUNTY POLLUTION CONTROL DEPARTMENT

COASTAL ENERGY IMPACT PROGRAM PLANNING GRANT QUESTIONNAIRE

COMPANY NAME

LOCATION OR STREET ADDRESS

FUEL OIL - Please record in the appropriate spaces below the total amount of fuel oil fired in your entire facility and the average weight percent of sulfur in the fuel oil. If exact values are unavailable please estimate and indicate the estimated values with the letter "E" preceding the number.

Year	1976					1\9	77		1978				1979	
Calendar Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2
1000's of tons of fuel oil												-		
Average weight percent sulfur														

COAL - Please record in the appropriate spaces below the total amount of coal fired in your entire facility by quarter and the average weight percent of sulfur in the coal. If exact values are unavailable please estimate and indicate the estimated values with the letter "E" preceding the number.

	1979	
4	1	2
	-	-
	4	4 1

NON-PERMITTED SULFUR DIOXIDE EMISSIONS - Please record in the appropriate spaces below the actual total sulfur dioxide emissions from all sources at this facility constructed or last modified prior to March 5, 1972. If exact values are unavailable please estimate and indicate the estimated values with the letter "E" preceding the number.

Year	1976					1977				1978				1979		
Calendar Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2		
100's of tons of SO2																

HARRIS COUNTY POLLUTION CONTROL DEPARTMENT COASTAL ENERGY IMPACT PROGRAM PLANNING GRANT QUESTIONNAIRE

COMPANY NAME

8-35

LOCATION OR STREET ADDRESS

SULFUR DIOXIDE EMISSIONS - Please list by calendar quarter and T.A.C.B. permit number actual sulfur dioxide emissions in tons for all permitted sources at this facility constructed or modified between March 5, 1972 and July 26, 1976. If exact values are unavailable please estimate and indicate the estimated values with the letter "E" preceding the number.

- 2 -

	TONS OF SULFUR DIOXIDE BY CALENDAR QUARTER													
Year		1 9	76			19	77			1 9	1979			
Calendar Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2
Permit Number														
												-		
												-		
								· · · ·						
									· · · · · · · · · · · · · · · · · · ·					

 HARRIS COUNTY POLLUTION CONTROL DEPARTMENT COASTAL ENERGY IMPACT PROGRAM PLANNING GRANT QUESTIONNAIRE

COMPANY NAME

LOCATION OR STREET ADDRESS

PERMITTED SULFUR DIOXIDE EMISSIONS - Please list by calendar quarter and T.A.C.B. permit number sulfur dioxide emissions in tons for all permitted sources at this facility constructed or modified after July 26, 1976. If exact values are unavailable please estimate and indicate the estimated values with the letter "E" preceding the number.

Year Calendar Quarter	TONS OF SULFUR DIOXIDE BY CALENDAR QUARTER													
	1976				1977					1 9	1979			
	1	2	3	4	1	2	3	4	1	2	3	4	1	2
Permit Number														
2 2														
												•		
												A		

PREPARED BY

TELEPHONE NUMBER

DATE

- 3 -